Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  qseq1 Structured version   Unicode version

Theorem qseq1 6956
 Description: Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
qseq1

Proof of Theorem qseq1
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexeq 2907 . . 3
21abbidv 2552 . 2
3 df-qs 6913 . 2
4 df-qs 6913 . 2
52, 3, 43eqtr4g 2495 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1653  cab 2424  wrex 2708  cec 6905  cqs 6906 This theorem is referenced by:  pi1bas  19065  pstmval  24292 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-rex 2713  df-qs 6913
 Copyright terms: Public domain W3C validator