MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qsssubdrg Unicode version

Theorem qsssubdrg 16431
Description: The rational numbers are a subset of any subfield of the complexes. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
qsssubdrg  |-  ( ( R  e.  (SubRing ` fld )  /\  (flds  R )  e.  DivRing )  ->  QQ  C_  R )

Proof of Theorem qsssubdrg
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 10318 . . 3  |-  ( z  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  z  =  ( x  /  y ) )
2 drngrng 15519 . . . . . . . 8  |-  ( (flds  R )  e.  DivRing  ->  (flds  R )  e.  Ring )
32ad2antlr 707 . . . . . . 7  |-  ( ( ( R  e.  (SubRing ` fld )  /\  (flds  R )  e.  DivRing )  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  ->  (flds  R )  e.  Ring )
4 zsssubrg 16430 . . . . . . . . . 10  |-  ( R  e.  (SubRing ` fld )  ->  ZZ  C_  R )
54ad2antrr 706 . . . . . . . . 9  |-  ( ( ( R  e.  (SubRing ` fld )  /\  (flds  R )  e.  DivRing )  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  ->  ZZ  C_  R
)
6 eqid 2283 . . . . . . . . . . 11  |-  (flds  R )  =  (flds  R )
76subrgbas 15554 . . . . . . . . . 10  |-  ( R  e.  (SubRing ` fld )  ->  R  =  ( Base `  (flds  R )
) )
87ad2antrr 706 . . . . . . . . 9  |-  ( ( ( R  e.  (SubRing ` fld )  /\  (flds  R )  e.  DivRing )  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  ->  R  =  ( Base `  (flds  R ) ) )
95, 8sseqtrd 3214 . . . . . . . 8  |-  ( ( ( R  e.  (SubRing ` fld )  /\  (flds  R )  e.  DivRing )  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  ->  ZZ  C_  ( Base `  (flds  R ) ) )
10 simprl 732 . . . . . . . 8  |-  ( ( ( R  e.  (SubRing ` fld )  /\  (flds  R )  e.  DivRing )  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  ->  x  e.  ZZ )
119, 10sseldd 3181 . . . . . . 7  |-  ( ( ( R  e.  (SubRing ` fld )  /\  (flds  R )  e.  DivRing )  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  ->  x  e.  ( Base `  (flds  R ) ) )
12 nnz 10045 . . . . . . . . . 10  |-  ( y  e.  NN  ->  y  e.  ZZ )
1312ad2antll 709 . . . . . . . . 9  |-  ( ( ( R  e.  (SubRing ` fld )  /\  (flds  R )  e.  DivRing )  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  ->  y  e.  ZZ )
149, 13sseldd 3181 . . . . . . . 8  |-  ( ( ( R  e.  (SubRing ` fld )  /\  (flds  R )  e.  DivRing )  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  ->  y  e.  ( Base `  (flds  R ) ) )
15 nnne0 9778 . . . . . . . . . 10  |-  ( y  e.  NN  ->  y  =/=  0 )
1615ad2antll 709 . . . . . . . . 9  |-  ( ( ( R  e.  (SubRing ` fld )  /\  (flds  R )  e.  DivRing )  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  ->  y  =/=  0 )
17 cnfld0 16398 . . . . . . . . . . 11  |-  0  =  ( 0g ` fld )
186, 17subrg0 15552 . . . . . . . . . 10  |-  ( R  e.  (SubRing ` fld )  ->  0  =  ( 0g `  (flds  R )
) )
1918ad2antrr 706 . . . . . . . . 9  |-  ( ( ( R  e.  (SubRing ` fld )  /\  (flds  R )  e.  DivRing )  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  ->  0  =  ( 0g `  (flds  R ) ) )
2016, 19neeqtrd 2468 . . . . . . . 8  |-  ( ( ( R  e.  (SubRing ` fld )  /\  (flds  R )  e.  DivRing )  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  ->  y  =/=  ( 0g `  (flds  R ) ) )
21 eqid 2283 . . . . . . . . . 10  |-  ( Base `  (flds  R ) )  =  (
Base `  (flds  R ) )
22 eqid 2283 . . . . . . . . . 10  |-  (Unit `  (flds  R
) )  =  (Unit `  (flds  R ) )
23 eqid 2283 . . . . . . . . . 10  |-  ( 0g
`  (flds  R ) )  =  ( 0g `  (flds  R ) )
2421, 22, 23drngunit 15517 . . . . . . . . 9  |-  ( (flds  R )  e.  DivRing  ->  ( y  e.  (Unit `  (flds  R ) )  <->  ( y  e.  ( Base `  (flds  R )
)  /\  y  =/=  ( 0g `  (flds  R ) ) ) ) )
2524ad2antlr 707 . . . . . . . 8  |-  ( ( ( R  e.  (SubRing ` fld )  /\  (flds  R )  e.  DivRing )  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  ->  ( y  e.  (Unit `  (flds  R ) )  <->  ( y  e.  ( Base `  (flds  R )
)  /\  y  =/=  ( 0g `  (flds  R ) ) ) ) )
2614, 20, 25mpbir2and 888 . . . . . . 7  |-  ( ( ( R  e.  (SubRing ` fld )  /\  (flds  R )  e.  DivRing )  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  ->  y  e.  (Unit `  (flds  R ) ) )
27 eqid 2283 . . . . . . . 8  |-  (/r `  (flds  R )
)  =  (/r `  (flds  R )
)
2821, 22, 27dvrcl 15468 . . . . . . 7  |-  ( ( (flds  R )  e.  Ring  /\  x  e.  ( Base `  (flds  R )
)  /\  y  e.  (Unit `  (flds  R ) ) )  -> 
( x (/r `  (flds  R )
) y )  e.  ( Base `  (flds  R )
) )
293, 11, 26, 28syl3anc 1182 . . . . . 6  |-  ( ( ( R  e.  (SubRing ` fld )  /\  (flds  R )  e.  DivRing )  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  ->  ( x
(/r `  (flds  R ) ) y )  e.  ( Base `  (flds  R )
) )
30 simpll 730 . . . . . . . 8  |-  ( ( ( R  e.  (SubRing ` fld )  /\  (flds  R )  e.  DivRing )  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  ->  R  e.  (SubRing ` fld ) )
315, 10sseldd 3181 . . . . . . . 8  |-  ( ( ( R  e.  (SubRing ` fld )  /\  (flds  R )  e.  DivRing )  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  ->  x  e.  R )
32 cnflddiv 16404 . . . . . . . . 9  |-  /  =  (/r
` fld
)
336, 32, 22, 27subrgdv 15562 . . . . . . . 8  |-  ( ( R  e.  (SubRing ` fld )  /\  x  e.  R  /\  y  e.  (Unit `  (flds  R ) ) )  ->  ( x  / 
y )  =  ( x (/r `  (flds  R ) ) y ) )
3430, 31, 26, 33syl3anc 1182 . . . . . . 7  |-  ( ( ( R  e.  (SubRing ` fld )  /\  (flds  R )  e.  DivRing )  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  ->  ( x  /  y )  =  ( x (/r `  (flds  R )
) y ) )
3534, 8eleq12d 2351 . . . . . 6  |-  ( ( ( R  e.  (SubRing ` fld )  /\  (flds  R )  e.  DivRing )  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  ->  ( (
x  /  y )  e.  R  <->  ( x
(/r `  (flds  R ) ) y )  e.  ( Base `  (flds  R )
) ) )
3629, 35mpbird 223 . . . . 5  |-  ( ( ( R  e.  (SubRing ` fld )  /\  (flds  R )  e.  DivRing )  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  ->  ( x  /  y )  e.  R )
37 eleq1 2343 . . . . 5  |-  ( z  =  ( x  / 
y )  ->  (
z  e.  R  <->  ( x  /  y )  e.  R ) )
3836, 37syl5ibrcom 213 . . . 4  |-  ( ( ( R  e.  (SubRing ` fld )  /\  (flds  R )  e.  DivRing )  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  ->  ( z  =  ( x  / 
y )  ->  z  e.  R ) )
3938rexlimdvva 2674 . . 3  |-  ( ( R  e.  (SubRing ` fld )  /\  (flds  R )  e.  DivRing )  ->  ( E. x  e.  ZZ  E. y  e.  NN  z  =  ( x  / 
y )  ->  z  e.  R ) )
401, 39syl5bi 208 . 2  |-  ( ( R  e.  (SubRing ` fld )  /\  (flds  R )  e.  DivRing )  ->  (
z  e.  QQ  ->  z  e.  R ) )
4140ssrdv 3185 1  |-  ( ( R  e.  (SubRing ` fld )  /\  (flds  R )  e.  DivRing )  ->  QQ  C_  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544    C_ wss 3152   ` cfv 5255  (class class class)co 5858   0cc0 8737    / cdiv 9423   NNcn 9746   ZZcz 10024   QQcq 10316   Basecbs 13148   ↾s cress 13149   0gc0g 13400   Ringcrg 15337  Unitcui 15421  /rcdvr 15464   DivRingcdr 15512  SubRingcsubrg 15541  ℂfldccnfld 16377
This theorem is referenced by:  cphqss  18624  resscdrg  18775
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-tpos 6234  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-fz 10783  df-seq 11047  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-tset 13227  df-ple 13228  df-ds 13230  df-0g 13404  df-mnd 14367  df-grp 14489  df-minusg 14490  df-mulg 14492  df-subg 14618  df-cmn 15091  df-mgp 15326  df-rng 15340  df-cring 15341  df-ur 15342  df-oppr 15405  df-dvdsr 15423  df-unit 15424  df-invr 15454  df-dvr 15465  df-drng 15514  df-subrg 15543  df-cnfld 16378
  Copyright terms: Public domain W3C validator