MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopcmap Unicode version

Theorem qtopcmap 17712
Description: If  F is a surjective continuous closed map, then it is a quotient map. (A closed map is a function that maps closed sets to closed sets.) (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
qtopomap.4  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
qtopomap.5  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
qtopomap.6  |-  ( ph  ->  ran  F  =  Y )
qtopcmap.7  |-  ( (
ph  /\  x  e.  ( Clsd `  J )
)  ->  ( F " x )  e.  (
Clsd `  K )
)
Assertion
Ref Expression
qtopcmap  |-  ( ph  ->  K  =  ( J qTop 
F ) )
Distinct variable groups:    x, F    x, J    x, K    ph, x    x, Y

Proof of Theorem qtopcmap
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 qtopomap.5 . . 3  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
2 qtopomap.4 . . 3  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
3 qtopomap.6 . . 3  |-  ( ph  ->  ran  F  =  Y )
4 qtopss 17708 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  K  e.  (TopOn `  Y
)  /\  ran  F  =  Y )  ->  K  C_  ( J qTop  F ) )
51, 2, 3, 4syl3anc 1184 . 2  |-  ( ph  ->  K  C_  ( J qTop  F ) )
6 cntop1 17266 . . . . . 6  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
71, 6syl 16 . . . . 5  |-  ( ph  ->  J  e.  Top )
8 eqid 2412 . . . . . . . . . 10  |-  U. J  =  U. J
98toptopon 16961 . . . . . . . . 9  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
107, 9sylib 189 . . . . . . . 8  |-  ( ph  ->  J  e.  (TopOn `  U. J ) )
11 cnf2 17275 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  U. J )  /\  K  e.  (TopOn `  Y )  /\  F  e.  ( J  Cn  K ) )  ->  F : U. J
--> Y )
1210, 2, 1, 11syl3anc 1184 . . . . . . 7  |-  ( ph  ->  F : U. J --> Y )
13 ffn 5558 . . . . . . 7  |-  ( F : U. J --> Y  ->  F  Fn  U. J )
1412, 13syl 16 . . . . . 6  |-  ( ph  ->  F  Fn  U. J
)
15 df-fo 5427 . . . . . 6  |-  ( F : U. J -onto-> Y  <->  ( F  Fn  U. J  /\  ran  F  =  Y ) )
1614, 3, 15sylanbrc 646 . . . . 5  |-  ( ph  ->  F : U. J -onto-> Y )
178elqtop2 17694 . . . . 5  |-  ( ( J  e.  Top  /\  F : U. J -onto-> Y
)  ->  ( y  e.  ( J qTop  F )  <-> 
( y  C_  Y  /\  ( `' F "
y )  e.  J
) ) )
187, 16, 17syl2anc 643 . . . 4  |-  ( ph  ->  ( y  e.  ( J qTop  F )  <->  ( y  C_  Y  /\  ( `' F " y )  e.  J ) ) )
1916adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  F : U. J -onto-> Y )
20 difss 3442 . . . . . . . . 9  |-  ( Y 
\  y )  C_  Y
21 foimacnv 5659 . . . . . . . . 9  |-  ( ( F : U. J -onto-> Y  /\  ( Y  \ 
y )  C_  Y
)  ->  ( F " ( `' F "
( Y  \  y
) ) )  =  ( Y  \  y
) )
2219, 20, 21sylancl 644 . . . . . . . 8  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  ( F "
( `' F "
( Y  \  y
) ) )  =  ( Y  \  y
) )
232adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  K  e.  (TopOn `  Y ) )
24 toponuni 16955 . . . . . . . . . 10  |-  ( K  e.  (TopOn `  Y
)  ->  Y  =  U. K )
2523, 24syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  Y  =  U. K )
2625difeq1d 3432 . . . . . . . 8  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  ( Y  \ 
y )  =  ( U. K  \  y
) )
2722, 26eqtrd 2444 . . . . . . 7  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  ( F "
( `' F "
( Y  \  y
) ) )  =  ( U. K  \ 
y ) )
28 fofun 5621 . . . . . . . . . . . 12  |-  ( F : U. J -onto-> Y  ->  Fun  F )
2919, 28syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  Fun  F )
30 funcnvcnv 5476 . . . . . . . . . . 11  |-  ( Fun 
F  ->  Fun  `' `' F )
31 imadif 5495 . . . . . . . . . . 11  |-  ( Fun  `' `' F  ->  ( `' F " ( Y 
\  y ) )  =  ( ( `' F " Y ) 
\  ( `' F " y ) ) )
3229, 30, 313syl 19 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  ( `' F " ( Y  \  y
) )  =  ( ( `' F " Y )  \  ( `' F " y ) ) )
3312adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  F : U. J
--> Y )
34 fimacnv 5829 . . . . . . . . . . . 12  |-  ( F : U. J --> Y  -> 
( `' F " Y )  =  U. J )
3533, 34syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  ( `' F " Y )  =  U. J )
3635difeq1d 3432 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  ( ( `' F " Y ) 
\  ( `' F " y ) )  =  ( U. J  \ 
( `' F "
y ) ) )
3732, 36eqtrd 2444 . . . . . . . . 9  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  ( `' F " ( Y  \  y
) )  =  ( U. J  \  ( `' F " y ) ) )
387adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  J  e.  Top )
39 simprr 734 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  ( `' F " y )  e.  J
)
408opncld 17060 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  ( `' F " y )  e.  J )  -> 
( U. J  \ 
( `' F "
y ) )  e.  ( Clsd `  J
) )
4138, 39, 40syl2anc 643 . . . . . . . . 9  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  ( U. J  \  ( `' F "
y ) )  e.  ( Clsd `  J
) )
4237, 41eqeltrd 2486 . . . . . . . 8  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  ( `' F " ( Y  \  y
) )  e.  (
Clsd `  J )
)
43 qtopcmap.7 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( Clsd `  J )
)  ->  ( F " x )  e.  (
Clsd `  K )
)
4443ralrimiva 2757 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  (
Clsd `  J )
( F " x
)  e.  ( Clsd `  K ) )
4544adantr 452 . . . . . . . 8  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  A. x  e.  (
Clsd `  J )
( F " x
)  e.  ( Clsd `  K ) )
46 imaeq2 5166 . . . . . . . . . 10  |-  ( x  =  ( `' F " ( Y  \  y
) )  ->  ( F " x )  =  ( F " ( `' F " ( Y 
\  y ) ) ) )
4746eleq1d 2478 . . . . . . . . 9  |-  ( x  =  ( `' F " ( Y  \  y
) )  ->  (
( F " x
)  e.  ( Clsd `  K )  <->  ( F " ( `' F "
( Y  \  y
) ) )  e.  ( Clsd `  K
) ) )
4847rspcv 3016 . . . . . . . 8  |-  ( ( `' F " ( Y 
\  y ) )  e.  ( Clsd `  J
)  ->  ( A. x  e.  ( Clsd `  J ) ( F
" x )  e.  ( Clsd `  K
)  ->  ( F " ( `' F "
( Y  \  y
) ) )  e.  ( Clsd `  K
) ) )
4942, 45, 48sylc 58 . . . . . . 7  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  ( F "
( `' F "
( Y  \  y
) ) )  e.  ( Clsd `  K
) )
5027, 49eqeltrrd 2487 . . . . . 6  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  ( U. K  \  y )  e.  (
Clsd `  K )
)
51 topontop 16954 . . . . . . . 8  |-  ( K  e.  (TopOn `  Y
)  ->  K  e.  Top )
5223, 51syl 16 . . . . . . 7  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  K  e.  Top )
53 simprl 733 . . . . . . . 8  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  y  C_  Y
)
5453, 25sseqtrd 3352 . . . . . . 7  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  y  C_  U. K
)
55 eqid 2412 . . . . . . . 8  |-  U. K  =  U. K
5655isopn2 17059 . . . . . . 7  |-  ( ( K  e.  Top  /\  y  C_  U. K )  ->  ( y  e.  K  <->  ( U. K  \  y )  e.  (
Clsd `  K )
) )
5752, 54, 56syl2anc 643 . . . . . 6  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  ( y  e.  K  <->  ( U. K  \  y )  e.  (
Clsd `  K )
) )
5850, 57mpbird 224 . . . . 5  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  y  e.  K
)
5958ex 424 . . . 4  |-  ( ph  ->  ( ( y  C_  Y  /\  ( `' F " y )  e.  J
)  ->  y  e.  K ) )
6018, 59sylbid 207 . . 3  |-  ( ph  ->  ( y  e.  ( J qTop  F )  -> 
y  e.  K ) )
6160ssrdv 3322 . 2  |-  ( ph  ->  ( J qTop  F ) 
C_  K )
625, 61eqssd 3333 1  |-  ( ph  ->  K  =  ( J qTop 
F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2674    \ cdif 3285    C_ wss 3288   U.cuni 3983   `'ccnv 4844   ran crn 4846   "cima 4848   Fun wfun 5415    Fn wfn 5416   -->wf 5417   -onto->wfo 5419   ` cfv 5421  (class class class)co 6048   qTop cqtop 13692   Topctop 16921  TopOnctopon 16922   Clsdccld 17043    Cn ccn 17250
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-reu 2681  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-map 6987  df-qtop 13696  df-top 16926  df-topon 16929  df-cld 17046  df-cn 17253
  Copyright terms: Public domain W3C validator