MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopcmap Unicode version

Theorem qtopcmap 17410
Description: If  F is a surjective continuous closed map, then it is a quotient map. (A closed map is a function that maps closed sets to closed sets.) (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
qtopomap.4  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
qtopomap.5  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
qtopomap.6  |-  ( ph  ->  ran  F  =  Y )
qtopcmap.7  |-  ( (
ph  /\  x  e.  ( Clsd `  J )
)  ->  ( F " x )  e.  (
Clsd `  K )
)
Assertion
Ref Expression
qtopcmap  |-  ( ph  ->  K  =  ( J qTop 
F ) )
Distinct variable groups:    x, F    x, J    x, K    ph, x    x, Y

Proof of Theorem qtopcmap
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 qtopomap.5 . . 3  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
2 qtopomap.4 . . 3  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
3 qtopomap.6 . . 3  |-  ( ph  ->  ran  F  =  Y )
4 qtopss 17406 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  K  e.  (TopOn `  Y
)  /\  ran  F  =  Y )  ->  K  C_  ( J qTop  F ) )
51, 2, 3, 4syl3anc 1182 . 2  |-  ( ph  ->  K  C_  ( J qTop  F ) )
6 cntop1 16970 . . . . . 6  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
71, 6syl 15 . . . . 5  |-  ( ph  ->  J  e.  Top )
8 eqid 2283 . . . . . . . . . 10  |-  U. J  =  U. J
98toptopon 16671 . . . . . . . . 9  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
107, 9sylib 188 . . . . . . . 8  |-  ( ph  ->  J  e.  (TopOn `  U. J ) )
11 cnf2 16979 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  U. J )  /\  K  e.  (TopOn `  Y )  /\  F  e.  ( J  Cn  K ) )  ->  F : U. J
--> Y )
1210, 2, 1, 11syl3anc 1182 . . . . . . 7  |-  ( ph  ->  F : U. J --> Y )
13 ffn 5389 . . . . . . 7  |-  ( F : U. J --> Y  ->  F  Fn  U. J )
1412, 13syl 15 . . . . . 6  |-  ( ph  ->  F  Fn  U. J
)
15 df-fo 5261 . . . . . 6  |-  ( F : U. J -onto-> Y  <->  ( F  Fn  U. J  /\  ran  F  =  Y ) )
1614, 3, 15sylanbrc 645 . . . . 5  |-  ( ph  ->  F : U. J -onto-> Y )
178elqtop2 17392 . . . . 5  |-  ( ( J  e.  Top  /\  F : U. J -onto-> Y
)  ->  ( y  e.  ( J qTop  F )  <-> 
( y  C_  Y  /\  ( `' F "
y )  e.  J
) ) )
187, 16, 17syl2anc 642 . . . 4  |-  ( ph  ->  ( y  e.  ( J qTop  F )  <->  ( y  C_  Y  /\  ( `' F " y )  e.  J ) ) )
1916adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  F : U. J -onto-> Y )
20 difss 3303 . . . . . . . . 9  |-  ( Y 
\  y )  C_  Y
21 foimacnv 5490 . . . . . . . . 9  |-  ( ( F : U. J -onto-> Y  /\  ( Y  \ 
y )  C_  Y
)  ->  ( F " ( `' F "
( Y  \  y
) ) )  =  ( Y  \  y
) )
2219, 20, 21sylancl 643 . . . . . . . 8  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  ( F "
( `' F "
( Y  \  y
) ) )  =  ( Y  \  y
) )
232adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  K  e.  (TopOn `  Y ) )
24 toponuni 16665 . . . . . . . . . 10  |-  ( K  e.  (TopOn `  Y
)  ->  Y  =  U. K )
2523, 24syl 15 . . . . . . . . 9  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  Y  =  U. K )
2625difeq1d 3293 . . . . . . . 8  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  ( Y  \ 
y )  =  ( U. K  \  y
) )
2722, 26eqtrd 2315 . . . . . . 7  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  ( F "
( `' F "
( Y  \  y
) ) )  =  ( U. K  \ 
y ) )
28 fofun 5452 . . . . . . . . . . . 12  |-  ( F : U. J -onto-> Y  ->  Fun  F )
2919, 28syl 15 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  Fun  F )
30 funcnvcnv 5308 . . . . . . . . . . 11  |-  ( Fun 
F  ->  Fun  `' `' F )
31 imadif 5327 . . . . . . . . . . 11  |-  ( Fun  `' `' F  ->  ( `' F " ( Y 
\  y ) )  =  ( ( `' F " Y ) 
\  ( `' F " y ) ) )
3229, 30, 313syl 18 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  ( `' F " ( Y  \  y
) )  =  ( ( `' F " Y )  \  ( `' F " y ) ) )
3312adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  F : U. J
--> Y )
34 fimacnv 5657 . . . . . . . . . . . 12  |-  ( F : U. J --> Y  -> 
( `' F " Y )  =  U. J )
3533, 34syl 15 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  ( `' F " Y )  =  U. J )
3635difeq1d 3293 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  ( ( `' F " Y ) 
\  ( `' F " y ) )  =  ( U. J  \ 
( `' F "
y ) ) )
3732, 36eqtrd 2315 . . . . . . . . 9  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  ( `' F " ( Y  \  y
) )  =  ( U. J  \  ( `' F " y ) ) )
387adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  J  e.  Top )
39 simprr 733 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  ( `' F " y )  e.  J
)
408opncld 16770 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  ( `' F " y )  e.  J )  -> 
( U. J  \ 
( `' F "
y ) )  e.  ( Clsd `  J
) )
4138, 39, 40syl2anc 642 . . . . . . . . 9  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  ( U. J  \  ( `' F "
y ) )  e.  ( Clsd `  J
) )
4237, 41eqeltrd 2357 . . . . . . . 8  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  ( `' F " ( Y  \  y
) )  e.  (
Clsd `  J )
)
43 qtopcmap.7 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( Clsd `  J )
)  ->  ( F " x )  e.  (
Clsd `  K )
)
4443ralrimiva 2626 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  (
Clsd `  J )
( F " x
)  e.  ( Clsd `  K ) )
4544adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  A. x  e.  (
Clsd `  J )
( F " x
)  e.  ( Clsd `  K ) )
46 imaeq2 5008 . . . . . . . . . 10  |-  ( x  =  ( `' F " ( Y  \  y
) )  ->  ( F " x )  =  ( F " ( `' F " ( Y 
\  y ) ) ) )
4746eleq1d 2349 . . . . . . . . 9  |-  ( x  =  ( `' F " ( Y  \  y
) )  ->  (
( F " x
)  e.  ( Clsd `  K )  <->  ( F " ( `' F "
( Y  \  y
) ) )  e.  ( Clsd `  K
) ) )
4847rspcv 2880 . . . . . . . 8  |-  ( ( `' F " ( Y 
\  y ) )  e.  ( Clsd `  J
)  ->  ( A. x  e.  ( Clsd `  J ) ( F
" x )  e.  ( Clsd `  K
)  ->  ( F " ( `' F "
( Y  \  y
) ) )  e.  ( Clsd `  K
) ) )
4942, 45, 48sylc 56 . . . . . . 7  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  ( F "
( `' F "
( Y  \  y
) ) )  e.  ( Clsd `  K
) )
5027, 49eqeltrrd 2358 . . . . . 6  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  ( U. K  \  y )  e.  (
Clsd `  K )
)
51 topontop 16664 . . . . . . . 8  |-  ( K  e.  (TopOn `  Y
)  ->  K  e.  Top )
5223, 51syl 15 . . . . . . 7  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  K  e.  Top )
53 simprl 732 . . . . . . . 8  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  y  C_  Y
)
5453, 25sseqtrd 3214 . . . . . . 7  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  y  C_  U. K
)
55 eqid 2283 . . . . . . . 8  |-  U. K  =  U. K
5655isopn2 16769 . . . . . . 7  |-  ( ( K  e.  Top  /\  y  C_  U. K )  ->  ( y  e.  K  <->  ( U. K  \  y )  e.  (
Clsd `  K )
) )
5752, 54, 56syl2anc 642 . . . . . 6  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  ( y  e.  K  <->  ( U. K  \  y )  e.  (
Clsd `  K )
) )
5850, 57mpbird 223 . . . . 5  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  y  e.  K
)
5958ex 423 . . . 4  |-  ( ph  ->  ( ( y  C_  Y  /\  ( `' F " y )  e.  J
)  ->  y  e.  K ) )
6018, 59sylbid 206 . . 3  |-  ( ph  ->  ( y  e.  ( J qTop  F )  -> 
y  e.  K ) )
6160ssrdv 3185 . 2  |-  ( ph  ->  ( J qTop  F ) 
C_  K )
625, 61eqssd 3196 1  |-  ( ph  ->  K  =  ( J qTop 
F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543    \ cdif 3149    C_ wss 3152   U.cuni 3827   `'ccnv 4688   ran crn 4690   "cima 4692   Fun wfun 5249    Fn wfn 5250   -->wf 5251   -onto->wfo 5253   ` cfv 5255  (class class class)co 5858   qTop cqtop 13406   Topctop 16631  TopOnctopon 16632   Clsdccld 16753    Cn ccn 16954
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-map 6774  df-qtop 13410  df-top 16636  df-topon 16639  df-cld 16756  df-cn 16957
  Copyright terms: Public domain W3C validator