MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopcn Unicode version

Theorem qtopcn 17421
Description: Universal property of a quotient map. (Contributed by Mario Carneiro, 23-Mar-2015.)
Assertion
Ref Expression
qtopcn  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Z )
)  /\  ( F : X -onto-> Y  /\  G : Y
--> Z ) )  -> 
( G  e.  ( ( J qTop  F )  Cn  K )  <->  ( G  o.  F )  e.  ( J  Cn  K ) ) )

Proof of Theorem qtopcn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simplll 734 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Z ) )  /\  ( F : X -onto-> Y  /\  G : Y --> Z ) )  /\  x  e.  K )  ->  J  e.  (TopOn `  X )
)
2 simplrl 736 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Z ) )  /\  ( F : X -onto-> Y  /\  G : Y --> Z ) )  /\  x  e.  K )  ->  F : X -onto-> Y )
3 elqtop3 17410 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> Y )  ->  (
( `' G "
x )  e.  ( J qTop  F )  <->  ( ( `' G " x ) 
C_  Y  /\  ( `' F " ( `' G " x ) )  e.  J ) ) )
41, 2, 3syl2anc 642 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Z ) )  /\  ( F : X -onto-> Y  /\  G : Y --> Z ) )  /\  x  e.  K )  ->  (
( `' G "
x )  e.  ( J qTop  F )  <->  ( ( `' G " x ) 
C_  Y  /\  ( `' F " ( `' G " x ) )  e.  J ) ) )
5 cnvimass 5049 . . . . . . . 8  |-  ( `' G " x ) 
C_  dom  G
6 simplrr 737 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Z ) )  /\  ( F : X -onto-> Y  /\  G : Y --> Z ) )  /\  x  e.  K )  ->  G : Y --> Z )
7 fdm 5409 . . . . . . . . 9  |-  ( G : Y --> Z  ->  dom  G  =  Y )
86, 7syl 15 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Z ) )  /\  ( F : X -onto-> Y  /\  G : Y --> Z ) )  /\  x  e.  K )  ->  dom  G  =  Y )
95, 8syl5sseq 3239 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Z ) )  /\  ( F : X -onto-> Y  /\  G : Y --> Z ) )  /\  x  e.  K )  ->  ( `' G " x ) 
C_  Y )
109biantrurd 494 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Z ) )  /\  ( F : X -onto-> Y  /\  G : Y --> Z ) )  /\  x  e.  K )  ->  (
( `' F "
( `' G "
x ) )  e.  J  <->  ( ( `' G " x ) 
C_  Y  /\  ( `' F " ( `' G " x ) )  e.  J ) ) )
114, 10bitr4d 247 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Z ) )  /\  ( F : X -onto-> Y  /\  G : Y --> Z ) )  /\  x  e.  K )  ->  (
( `' G "
x )  e.  ( J qTop  F )  <->  ( `' F " ( `' G " x ) )  e.  J ) )
12 cnvco 4881 . . . . . . . 8  |-  `' ( G  o.  F )  =  ( `' F  o.  `' G )
1312imaeq1i 5025 . . . . . . 7  |-  ( `' ( G  o.  F
) " x )  =  ( ( `' F  o.  `' G
) " x )
14 imaco 5194 . . . . . . 7  |-  ( ( `' F  o.  `' G ) " x
)  =  ( `' F " ( `' G " x ) )
1513, 14eqtri 2316 . . . . . 6  |-  ( `' ( G  o.  F
) " x )  =  ( `' F " ( `' G "
x ) )
1615eleq1i 2359 . . . . 5  |-  ( ( `' ( G  o.  F ) " x
)  e.  J  <->  ( `' F " ( `' G " x ) )  e.  J )
1711, 16syl6bbr 254 . . . 4  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Z ) )  /\  ( F : X -onto-> Y  /\  G : Y --> Z ) )  /\  x  e.  K )  ->  (
( `' G "
x )  e.  ( J qTop  F )  <->  ( `' ( G  o.  F
) " x )  e.  J ) )
1817ralbidva 2572 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Z )
)  /\  ( F : X -onto-> Y  /\  G : Y
--> Z ) )  -> 
( A. x  e.  K  ( `' G " x )  e.  ( J qTop  F )  <->  A. x  e.  K  ( `' ( G  o.  F
) " x )  e.  J ) )
19 simprr 733 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Z )
)  /\  ( F : X -onto-> Y  /\  G : Y
--> Z ) )  ->  G : Y --> Z )
2019biantrurd 494 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Z )
)  /\  ( F : X -onto-> Y  /\  G : Y
--> Z ) )  -> 
( A. x  e.  K  ( `' G " x )  e.  ( J qTop  F )  <->  ( G : Y --> Z  /\  A. x  e.  K  ( `' G " x )  e.  ( J qTop  F
) ) ) )
21 fof 5467 . . . . . 6  |-  ( F : X -onto-> Y  ->  F : X --> Y )
2221ad2antrl 708 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Z )
)  /\  ( F : X -onto-> Y  /\  G : Y
--> Z ) )  ->  F : X --> Y )
23 fco 5414 . . . . 5  |-  ( ( G : Y --> Z  /\  F : X --> Y )  ->  ( G  o.  F ) : X --> Z )
2419, 22, 23syl2anc 642 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Z )
)  /\  ( F : X -onto-> Y  /\  G : Y
--> Z ) )  -> 
( G  o.  F
) : X --> Z )
2524biantrurd 494 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Z )
)  /\  ( F : X -onto-> Y  /\  G : Y
--> Z ) )  -> 
( A. x  e.  K  ( `' ( G  o.  F )
" x )  e.  J  <->  ( ( G  o.  F ) : X --> Z  /\  A. x  e.  K  ( `' ( G  o.  F ) " x
)  e.  J ) ) )
2618, 20, 253bitr3d 274 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Z )
)  /\  ( F : X -onto-> Y  /\  G : Y
--> Z ) )  -> 
( ( G : Y
--> Z  /\  A. x  e.  K  ( `' G " x )  e.  ( J qTop  F ) )  <->  ( ( G  o.  F ) : X --> Z  /\  A. x  e.  K  ( `' ( G  o.  F ) " x
)  e.  J ) ) )
27 qtoptopon 17411 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> Y )  ->  ( J qTop  F )  e.  (TopOn `  Y ) )
2827ad2ant2r 727 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Z )
)  /\  ( F : X -onto-> Y  /\  G : Y
--> Z ) )  -> 
( J qTop  F )  e.  (TopOn `  Y )
)
29 simplr 731 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Z )
)  /\  ( F : X -onto-> Y  /\  G : Y
--> Z ) )  ->  K  e.  (TopOn `  Z
) )
30 iscn 16981 . . 3  |-  ( ( ( J qTop  F )  e.  (TopOn `  Y
)  /\  K  e.  (TopOn `  Z ) )  ->  ( G  e.  ( ( J qTop  F
)  Cn  K )  <-> 
( G : Y --> Z  /\  A. x  e.  K  ( `' G " x )  e.  ( J qTop  F ) ) ) )
3128, 29, 30syl2anc 642 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Z )
)  /\  ( F : X -onto-> Y  /\  G : Y
--> Z ) )  -> 
( G  e.  ( ( J qTop  F )  Cn  K )  <->  ( G : Y --> Z  /\  A. x  e.  K  ( `' G " x )  e.  ( J qTop  F
) ) ) )
32 iscn 16981 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Z )
)  ->  ( ( G  o.  F )  e.  ( J  Cn  K
)  <->  ( ( G  o.  F ) : X --> Z  /\  A. x  e.  K  ( `' ( G  o.  F ) " x
)  e.  J ) ) )
3332adantr 451 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Z )
)  /\  ( F : X -onto-> Y  /\  G : Y
--> Z ) )  -> 
( ( G  o.  F )  e.  ( J  Cn  K )  <-> 
( ( G  o.  F ) : X --> Z  /\  A. x  e.  K  ( `' ( G  o.  F )
" x )  e.  J ) ) )
3426, 31, 333bitr4d 276 1  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Z )
)  /\  ( F : X -onto-> Y  /\  G : Y
--> Z ) )  -> 
( G  e.  ( ( J qTop  F )  Cn  K )  <->  ( G  o.  F )  e.  ( J  Cn  K ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556    C_ wss 3165   `'ccnv 4704   dom cdm 4705   "cima 4708    o. ccom 4709   -->wf 5267   -onto->wfo 5269   ` cfv 5271  (class class class)co 5874   qTop cqtop 13422  TopOnctopon 16648    Cn ccn 16970
This theorem is referenced by:  qtopeu  17423
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-map 6790  df-qtop 13426  df-top 16652  df-topon 16655  df-cn 16973
  Copyright terms: Public domain W3C validator