MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopf1 Unicode version

Theorem qtopf1 17507
Description: If a quotient map is injective, then it is a homeomorphism. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypotheses
Ref Expression
qtopf1.1  |-  ( ph  ->  J  e.  (TopOn `  X ) )
qtopf1.2  |-  ( ph  ->  F : X -1-1-> Y
)
Assertion
Ref Expression
qtopf1  |-  ( ph  ->  F  e.  ( J 
Homeo  ( J qTop  F ) ) )

Proof of Theorem qtopf1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 qtopf1.1 . . 3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 qtopf1.2 . . . 4  |-  ( ph  ->  F : X -1-1-> Y
)
3 f1fn 5438 . . . 4  |-  ( F : X -1-1-> Y  ->  F  Fn  X )
42, 3syl 15 . . 3  |-  ( ph  ->  F  Fn  X )
5 qtopid 17396 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  F  Fn  X )  ->  F  e.  ( J  Cn  ( J qTop  F ) ) )
61, 4, 5syl2anc 642 . 2  |-  ( ph  ->  F  e.  ( J  Cn  ( J qTop  F
) ) )
7 f1f1orn 5483 . . . . 5  |-  ( F : X -1-1-> Y  ->  F : X -1-1-onto-> ran  F )
82, 7syl 15 . . . 4  |-  ( ph  ->  F : X -1-1-onto-> ran  F
)
9 f1ocnv 5485 . . . 4  |-  ( F : X -1-1-onto-> ran  F  ->  `' F : ran  F -1-1-onto-> X )
10 f1of 5472 . . . 4  |-  ( `' F : ran  F -1-1-onto-> X  ->  `' F : ran  F --> X )
118, 9, 103syl 18 . . 3  |-  ( ph  ->  `' F : ran  F --> X )
12 imacnvcnv 5137 . . . . 5  |-  ( `' `' F " x )  =  ( F "
x )
13 imassrn 5025 . . . . . . 7  |-  ( F
" x )  C_  ran  F
1413a1i 10 . . . . . 6  |-  ( (
ph  /\  x  e.  J )  ->  ( F " x )  C_  ran  F )
152adantr 451 . . . . . . . 8  |-  ( (
ph  /\  x  e.  J )  ->  F : X -1-1-> Y )
16 toponss 16667 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  x  e.  J )  ->  x  C_  X )
171, 16sylan 457 . . . . . . . 8  |-  ( (
ph  /\  x  e.  J )  ->  x  C_  X )
18 f1imacnv 5489 . . . . . . . 8  |-  ( ( F : X -1-1-> Y  /\  x  C_  X )  ->  ( `' F " ( F " x
) )  =  x )
1915, 17, 18syl2anc 642 . . . . . . 7  |-  ( (
ph  /\  x  e.  J )  ->  ( `' F " ( F
" x ) )  =  x )
20 simpr 447 . . . . . . 7  |-  ( (
ph  /\  x  e.  J )  ->  x  e.  J )
2119, 20eqeltrd 2357 . . . . . 6  |-  ( (
ph  /\  x  e.  J )  ->  ( `' F " ( F
" x ) )  e.  J )
22 dffn4 5457 . . . . . . . . 9  |-  ( F  Fn  X  <->  F : X -onto-> ran  F )
234, 22sylib 188 . . . . . . . 8  |-  ( ph  ->  F : X -onto-> ran  F )
24 elqtop3 17394 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> ran  F )  -> 
( ( F "
x )  e.  ( J qTop  F )  <->  ( ( F " x )  C_  ran  F  /\  ( `' F " ( F
" x ) )  e.  J ) ) )
251, 23, 24syl2anc 642 . . . . . . 7  |-  ( ph  ->  ( ( F "
x )  e.  ( J qTop  F )  <->  ( ( F " x )  C_  ran  F  /\  ( `' F " ( F
" x ) )  e.  J ) ) )
2625adantr 451 . . . . . 6  |-  ( (
ph  /\  x  e.  J )  ->  (
( F " x
)  e.  ( J qTop 
F )  <->  ( ( F " x )  C_  ran  F  /\  ( `' F " ( F
" x ) )  e.  J ) ) )
2714, 21, 26mpbir2and 888 . . . . 5  |-  ( (
ph  /\  x  e.  J )  ->  ( F " x )  e.  ( J qTop  F ) )
2812, 27syl5eqel 2367 . . . 4  |-  ( (
ph  /\  x  e.  J )  ->  ( `' `' F " x )  e.  ( J qTop  F
) )
2928ralrimiva 2626 . . 3  |-  ( ph  ->  A. x  e.  J  ( `' `' F " x )  e.  ( J qTop  F
) )
30 qtoptopon 17395 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> ran  F )  -> 
( J qTop  F )  e.  (TopOn `  ran  F ) )
311, 23, 30syl2anc 642 . . . 4  |-  ( ph  ->  ( J qTop  F )  e.  (TopOn `  ran  F ) )
32 iscn 16965 . . . 4  |-  ( ( ( J qTop  F )  e.  (TopOn `  ran  F )  /\  J  e.  (TopOn `  X )
)  ->  ( `' F  e.  ( ( J qTop  F )  Cn  J
)  <->  ( `' F : ran  F --> X  /\  A. x  e.  J  ( `' `' F " x )  e.  ( J qTop  F
) ) ) )
3331, 1, 32syl2anc 642 . . 3  |-  ( ph  ->  ( `' F  e.  ( ( J qTop  F
)  Cn  J )  <-> 
( `' F : ran  F --> X  /\  A. x  e.  J  ( `' `' F " x )  e.  ( J qTop  F
) ) ) )
3411, 29, 33mpbir2and 888 . 2  |-  ( ph  ->  `' F  e.  (
( J qTop  F )  Cn  J ) )
35 ishmeo 17450 . 2  |-  ( F  e.  ( J  Homeo  ( J qTop  F ) )  <-> 
( F  e.  ( J  Cn  ( J qTop 
F ) )  /\  `' F  e.  (
( J qTop  F )  Cn  J ) ) )
366, 34, 35sylanbrc 645 1  |-  ( ph  ->  F  e.  ( J 
Homeo  ( J qTop  F ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543    C_ wss 3152   `'ccnv 4688   ran crn 4690   "cima 4692    Fn wfn 5250   -->wf 5251   -1-1->wf1 5252   -onto->wfo 5253   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5858   qTop cqtop 13406  TopOnctopon 16632    Cn ccn 16954    Homeo chmeo 17444
This theorem is referenced by:  t0kq  17509
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-map 6774  df-qtop 13410  df-top 16636  df-topon 16639  df-cn 16957  df-hmeo 17446
  Copyright terms: Public domain W3C validator