MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopid Unicode version

Theorem qtopid 17651
Description: A quotient map is a continuous function into its quotient topology. (Contributed by Mario Carneiro, 23-Mar-2015.)
Assertion
Ref Expression
qtopid  |-  ( ( J  e.  (TopOn `  X )  /\  F  Fn  X )  ->  F  e.  ( J  Cn  ( J qTop  F ) ) )

Proof of Theorem qtopid
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpr 448 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  F  Fn  X )  ->  F  Fn  X )
2 dffn4 5592 . . . 4  |-  ( F  Fn  X  <->  F : X -onto-> ran  F )
31, 2sylib 189 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  F  Fn  X )  ->  F : X -onto-> ran  F )
4 fof 5586 . . 3  |-  ( F : X -onto-> ran  F  ->  F : X --> ran  F
)
53, 4syl 16 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  F  Fn  X )  ->  F : X --> ran  F )
6 elqtop3 17649 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> ran  F )  -> 
( x  e.  ( J qTop  F )  <->  ( x  C_ 
ran  F  /\  ( `' F " x )  e.  J ) ) )
73, 6syldan 457 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  F  Fn  X )  ->  (
x  e.  ( J qTop 
F )  <->  ( x  C_ 
ran  F  /\  ( `' F " x )  e.  J ) ) )
87simplbda 608 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  Fn  X )  /\  x  e.  ( J qTop  F ) )  ->  ( `' F " x )  e.  J )
98ralrimiva 2725 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  F  Fn  X )  ->  A. x  e.  ( J qTop  F ) ( `' F "
x )  e.  J
)
10 qtoptopon 17650 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> ran  F )  -> 
( J qTop  F )  e.  (TopOn `  ran  F ) )
113, 10syldan 457 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  F  Fn  X )  ->  ( J qTop  F )  e.  (TopOn `  ran  F ) )
12 iscn 17214 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  ( J qTop  F )  e.  (TopOn `  ran  F ) )  ->  ( F  e.  ( J  Cn  ( J qTop  F ) )  <->  ( F : X --> ran  F  /\  A. x  e.  ( J qTop 
F ) ( `' F " x )  e.  J ) ) )
1311, 12syldan 457 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  F  Fn  X )  ->  ( F  e.  ( J  Cn  ( J qTop  F ) )  <->  ( F : X
--> ran  F  /\  A. x  e.  ( J qTop  F ) ( `' F " x )  e.  J
) ) )
145, 9, 13mpbir2and 889 1  |-  ( ( J  e.  (TopOn `  X )  /\  F  Fn  X )  ->  F  e.  ( J  Cn  ( J qTop  F ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    e. wcel 1717   A.wral 2642    C_ wss 3256   `'ccnv 4810   ran crn 4812   "cima 4814    Fn wfn 5382   -->wf 5383   -onto->wfo 5385   ` cfv 5387  (class class class)co 6013   qTop cqtop 13649  TopOnctopon 16875    Cn ccn 17203
This theorem is referenced by:  qtopcmplem  17653  qtopkgen  17656  qtoprest  17663  kqid  17674  qtopf1  17762  qtophmeo  17763  divstgplem  18064
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-reu 2649  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-op 3759  df-uni 3951  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-id 4432  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-map 6949  df-qtop 13653  df-top 16879  df-topon 16882  df-cn 17206
  Copyright terms: Public domain W3C validator