MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopkgen Unicode version

Theorem qtopkgen 17417
Description: A quotient of a compactly generated space is compactly generated. (Contributed by Mario Carneiro, 9-Apr-2015.)
Hypothesis
Ref Expression
qtopcmp.1  |-  X  = 
U. J
Assertion
Ref Expression
qtopkgen  |-  ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  ->  ( J qTop  F )  e.  ran 𝑘Gen )

Proof of Theorem qtopkgen
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 kgentop 17253 . . 3  |-  ( J  e.  ran 𝑘Gen  ->  J  e.  Top )
2 qtopcmp.1 . . . 4  |-  X  = 
U. J
32qtoptop 17407 . . 3  |-  ( ( J  e.  Top  /\  F  Fn  X )  ->  ( J qTop  F )  e.  Top )
41, 3sylan 457 . 2  |-  ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  ->  ( J qTop  F )  e.  Top )
5 elssuni 3871 . . . . . . . 8  |-  ( x  e.  (𝑘Gen `  ( J qTop  F
) )  ->  x  C_ 
U. (𝑘Gen `  ( J qTop  F
) ) )
65adantl 452 . . . . . . 7  |-  ( ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  /\  x  e.  (𝑘Gen `  ( J qTop  F )
) )  ->  x  C_ 
U. (𝑘Gen `  ( J qTop  F
) ) )
74adantr 451 . . . . . . . 8  |-  ( ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  /\  x  e.  (𝑘Gen `  ( J qTop  F )
) )  ->  ( J qTop  F )  e.  Top )
8 eqid 2296 . . . . . . . . 9  |-  U. ( J qTop  F )  =  U. ( J qTop  F )
98kgenuni 17250 . . . . . . . 8  |-  ( ( J qTop  F )  e. 
Top  ->  U. ( J qTop  F
)  =  U. (𝑘Gen `  ( J qTop  F )
) )
107, 9syl 15 . . . . . . 7  |-  ( ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  /\  x  e.  (𝑘Gen `  ( J qTop  F )
) )  ->  U. ( J qTop  F )  =  U. (𝑘Gen
`  ( J qTop  F
) ) )
116, 10sseqtr4d 3228 . . . . . 6  |-  ( ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  /\  x  e.  (𝑘Gen `  ( J qTop  F )
) )  ->  x  C_ 
U. ( J qTop  F
) )
12 simpll 730 . . . . . . . 8  |-  ( ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  /\  x  e.  (𝑘Gen `  ( J qTop  F )
) )  ->  J  e.  ran 𝑘Gen )
1312, 1syl 15 . . . . . . 7  |-  ( ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  /\  x  e.  (𝑘Gen `  ( J qTop  F )
) )  ->  J  e.  Top )
14 simplr 731 . . . . . . . 8  |-  ( ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  /\  x  e.  (𝑘Gen `  ( J qTop  F )
) )  ->  F  Fn  X )
15 dffn4 5473 . . . . . . . 8  |-  ( F  Fn  X  <->  F : X -onto-> ran  F )
1614, 15sylib 188 . . . . . . 7  |-  ( ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  /\  x  e.  (𝑘Gen `  ( J qTop  F )
) )  ->  F : X -onto-> ran  F )
172qtopuni 17409 . . . . . . 7  |-  ( ( J  e.  Top  /\  F : X -onto-> ran  F
)  ->  ran  F  = 
U. ( J qTop  F
) )
1813, 16, 17syl2anc 642 . . . . . 6  |-  ( ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  /\  x  e.  (𝑘Gen `  ( J qTop  F )
) )  ->  ran  F  =  U. ( J qTop 
F ) )
1911, 18sseqtr4d 3228 . . . . 5  |-  ( ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  /\  x  e.  (𝑘Gen `  ( J qTop  F )
) )  ->  x  C_ 
ran  F )
202toptopon 16687 . . . . . . . . 9  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
2113, 20sylib 188 . . . . . . . 8  |-  ( ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  /\  x  e.  (𝑘Gen `  ( J qTop  F )
) )  ->  J  e.  (TopOn `  X )
)
22 qtopid 17412 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  F  Fn  X )  ->  F  e.  ( J  Cn  ( J qTop  F ) ) )
2321, 14, 22syl2anc 642 . . . . . . 7  |-  ( ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  /\  x  e.  (𝑘Gen `  ( J qTop  F )
) )  ->  F  e.  ( J  Cn  ( J qTop  F ) ) )
24 kgencn3 17269 . . . . . . . 8  |-  ( ( J  e.  ran 𝑘Gen  /\  ( J qTop  F )  e.  Top )  ->  ( J  Cn  ( J qTop  F )
)  =  ( J  Cn  (𝑘Gen `  ( J qTop  F
) ) ) )
2512, 7, 24syl2anc 642 . . . . . . 7  |-  ( ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  /\  x  e.  (𝑘Gen `  ( J qTop  F )
) )  ->  ( J  Cn  ( J qTop  F
) )  =  ( J  Cn  (𝑘Gen `  ( J qTop  F ) ) ) )
2623, 25eleqtrd 2372 . . . . . 6  |-  ( ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  /\  x  e.  (𝑘Gen `  ( J qTop  F )
) )  ->  F  e.  ( J  Cn  (𝑘Gen `  ( J qTop  F )
) ) )
27 cnima 17010 . . . . . 6  |-  ( ( F  e.  ( J  Cn  (𝑘Gen `  ( J qTop  F
) ) )  /\  x  e.  (𝑘Gen `  ( J qTop  F ) ) )  ->  ( `' F " x )  e.  J
)
2826, 27sylancom 648 . . . . 5  |-  ( ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  /\  x  e.  (𝑘Gen `  ( J qTop  F )
) )  ->  ( `' F " x )  e.  J )
292elqtop2 17408 . . . . . 6  |-  ( ( J  e.  ran 𝑘Gen  /\  F : X -onto-> ran  F )  -> 
( x  e.  ( J qTop  F )  <->  ( x  C_ 
ran  F  /\  ( `' F " x )  e.  J ) ) )
3012, 16, 29syl2anc 642 . . . . 5  |-  ( ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  /\  x  e.  (𝑘Gen `  ( J qTop  F )
) )  ->  (
x  e.  ( J qTop 
F )  <->  ( x  C_ 
ran  F  /\  ( `' F " x )  e.  J ) ) )
3119, 28, 30mpbir2and 888 . . . 4  |-  ( ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  /\  x  e.  (𝑘Gen `  ( J qTop  F )
) )  ->  x  e.  ( J qTop  F ) )
3231ex 423 . . 3  |-  ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  ->  (
x  e.  (𝑘Gen `  ( J qTop  F ) )  ->  x  e.  ( J qTop  F ) ) )
3332ssrdv 3198 . 2  |-  ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  ->  (𝑘Gen `  ( J qTop  F )
)  C_  ( J qTop  F ) )
34 iskgen2 17259 . 2  |-  ( ( J qTop  F )  e. 
ran 𝑘Gen  <-> 
( ( J qTop  F
)  e.  Top  /\  (𝑘Gen
`  ( J qTop  F
) )  C_  ( J qTop  F ) ) )
354, 33, 34sylanbrc 645 1  |-  ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  ->  ( J qTop  F )  e.  ran 𝑘Gen )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    C_ wss 3165   U.cuni 3843   `'ccnv 4704   ran crn 4706   "cima 4708    Fn wfn 5266   -onto->wfo 5269   ` cfv 5271  (class class class)co 5874   qTop cqtop 13422   Topctop 16647  TopOnctopon 16648    Cn ccn 16970  𝑘Genckgen 17244
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-fin 6883  df-fi 7181  df-rest 13343  df-topgen 13360  df-qtop 13426  df-top 16652  df-bases 16654  df-topon 16655  df-cn 16973  df-cmp 17130  df-kgen 17245
  Copyright terms: Public domain W3C validator