MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopres Unicode version

Theorem qtopres 17405
Description: The quotient topology is unaffected by restriction to the base set. This property makes it slightly more convenient to use, since we don't have to require that  F be a function with domain  X. (Contributed by Mario Carneiro, 23-Mar-2015.)
Hypothesis
Ref Expression
qtopval.1  |-  X  = 
U. J
Assertion
Ref Expression
qtopres  |-  ( F  e.  V  ->  ( J qTop  F )  =  ( J qTop  ( F  |`  X ) ) )

Proof of Theorem qtopres
Dummy variables  s 
f  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resima 5003 . . . . . . 7  |-  ( ( F  |`  X ) " X )  =  ( F " X )
21pweqi 3642 . . . . . 6  |-  ~P (
( F  |`  X )
" X )  =  ~P ( F " X )
3 rabeq 2795 . . . . . 6  |-  ( ~P ( ( F  |`  X ) " X
)  =  ~P ( F " X )  ->  { s  e.  ~P ( ( F  |`  X ) " X
)  |  ( ( `' ( F  |`  X ) " s
)  i^i  X )  e.  J }  =  {
s  e.  ~P ( F " X )  |  ( ( `' ( F  |`  X ) " s )  i^i 
X )  e.  J } )
42, 3ax-mp 8 . . . . 5  |-  { s  e.  ~P ( ( F  |`  X ) " X )  |  ( ( `' ( F  |`  X ) " s
)  i^i  X )  e.  J }  =  {
s  e.  ~P ( F " X )  |  ( ( `' ( F  |`  X ) " s )  i^i 
X )  e.  J }
5 residm 5002 . . . . . . . . . . 11  |-  ( ( F  |`  X )  |`  X )  =  ( F  |`  X )
65cnveqi 4872 . . . . . . . . . 10  |-  `' ( ( F  |`  X )  |`  X )  =  `' ( F  |`  X )
76imaeq1i 5025 . . . . . . . . 9  |-  ( `' ( ( F  |`  X )  |`  X )
" s )  =  ( `' ( F  |`  X ) " s
)
8 cnvresima 5178 . . . . . . . . 9  |-  ( `' ( ( F  |`  X )  |`  X )
" s )  =  ( ( `' ( F  |`  X ) " s )  i^i 
X )
9 cnvresima 5178 . . . . . . . . 9  |-  ( `' ( F  |`  X )
" s )  =  ( ( `' F " s )  i^i  X
)
107, 8, 93eqtr3i 2324 . . . . . . . 8  |-  ( ( `' ( F  |`  X ) " s
)  i^i  X )  =  ( ( `' F " s )  i^i  X )
1110eleq1i 2359 . . . . . . 7  |-  ( ( ( `' ( F  |`  X ) " s
)  i^i  X )  e.  J  <->  ( ( `' F " s )  i^i  X )  e.  J )
1211a1i 10 . . . . . 6  |-  ( s  e.  ~P ( F
" X )  -> 
( ( ( `' ( F  |`  X )
" s )  i^i 
X )  e.  J  <->  ( ( `' F "
s )  i^i  X
)  e.  J ) )
1312rabbiia 2791 . . . . 5  |-  { s  e.  ~P ( F
" X )  |  ( ( `' ( F  |`  X ) " s )  i^i 
X )  e.  J }  =  { s  e.  ~P ( F " X )  |  ( ( `' F "
s )  i^i  X
)  e.  J }
144, 13eqtr2i 2317 . . . 4  |-  { s  e.  ~P ( F
" X )  |  ( ( `' F " s )  i^i  X
)  e.  J }  =  { s  e.  ~P ( ( F  |`  X ) " X
)  |  ( ( `' ( F  |`  X ) " s
)  i^i  X )  e.  J }
15 qtopval.1 . . . . 5  |-  X  = 
U. J
1615qtopval 17402 . . . 4  |-  ( ( J  e.  _V  /\  F  e.  V )  ->  ( J qTop  F )  =  { s  e. 
~P ( F " X )  |  ( ( `' F "
s )  i^i  X
)  e.  J }
)
17 resexg 5010 . . . . 5  |-  ( F  e.  V  ->  ( F  |`  X )  e. 
_V )
1815qtopval 17402 . . . . 5  |-  ( ( J  e.  _V  /\  ( F  |`  X )  e.  _V )  -> 
( J qTop  ( F  |`  X ) )  =  { s  e.  ~P ( ( F  |`  X ) " X
)  |  ( ( `' ( F  |`  X ) " s
)  i^i  X )  e.  J } )
1917, 18sylan2 460 . . . 4  |-  ( ( J  e.  _V  /\  F  e.  V )  ->  ( J qTop  ( F  |`  X ) )  =  { s  e.  ~P ( ( F  |`  X ) " X
)  |  ( ( `' ( F  |`  X ) " s
)  i^i  X )  e.  J } )
2014, 16, 193eqtr4a 2354 . . 3  |-  ( ( J  e.  _V  /\  F  e.  V )  ->  ( J qTop  F )  =  ( J qTop  ( F  |`  X ) ) )
2120expcom 424 . 2  |-  ( F  e.  V  ->  ( J  e.  _V  ->  ( J qTop  F )  =  ( J qTop  ( F  |`  X ) ) ) )
22 df-qtop 13426 . . . . 5  |- qTop  =  ( j  e.  _V , 
f  e.  _V  |->  { s  e.  ~P (
f " U. j
)  |  ( ( `' f " s
)  i^i  U. j
)  e.  j } )
2322reldmmpt2 5971 . . . 4  |-  Rel  dom qTop
2423ovprc1 5902 . . 3  |-  ( -.  J  e.  _V  ->  ( J qTop  F )  =  (/) )
2523ovprc1 5902 . . 3  |-  ( -.  J  e.  _V  ->  ( J qTop  ( F  |`  X ) )  =  (/) )
2624, 25eqtr4d 2331 . 2  |-  ( -.  J  e.  _V  ->  ( J qTop  F )  =  ( J qTop  ( F  |`  X ) ) )
2721, 26pm2.61d1 151 1  |-  ( F  e.  V  ->  ( J qTop  F )  =  ( J qTop  ( F  |`  X ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   {crab 2560   _Vcvv 2801    i^i cin 3164   (/)c0 3468   ~Pcpw 3638   U.cuni 3843   `'ccnv 4704    |` cres 4707   "cima 4708  (class class class)co 5874   qTop cqtop 13422
This theorem is referenced by:  qtoptop2  17406
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-qtop 13426
  Copyright terms: Public domain W3C validator