MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopres Unicode version

Theorem qtopres 17389
Description: The quotient topology is unaffected by restriction to the base set. This property makes it slightly more convenient to use, since we don't have to require that  F be a function with domain  X. (Contributed by Mario Carneiro, 23-Mar-2015.)
Hypothesis
Ref Expression
qtopval.1  |-  X  = 
U. J
Assertion
Ref Expression
qtopres  |-  ( F  e.  V  ->  ( J qTop  F )  =  ( J qTop  ( F  |`  X ) ) )

Proof of Theorem qtopres
Dummy variables  s 
f  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resima 4987 . . . . . . 7  |-  ( ( F  |`  X ) " X )  =  ( F " X )
21pweqi 3629 . . . . . 6  |-  ~P (
( F  |`  X )
" X )  =  ~P ( F " X )
3 rabeq 2782 . . . . . 6  |-  ( ~P ( ( F  |`  X ) " X
)  =  ~P ( F " X )  ->  { s  e.  ~P ( ( F  |`  X ) " X
)  |  ( ( `' ( F  |`  X ) " s
)  i^i  X )  e.  J }  =  {
s  e.  ~P ( F " X )  |  ( ( `' ( F  |`  X ) " s )  i^i 
X )  e.  J } )
42, 3ax-mp 8 . . . . 5  |-  { s  e.  ~P ( ( F  |`  X ) " X )  |  ( ( `' ( F  |`  X ) " s
)  i^i  X )  e.  J }  =  {
s  e.  ~P ( F " X )  |  ( ( `' ( F  |`  X ) " s )  i^i 
X )  e.  J }
5 residm 4986 . . . . . . . . . . 11  |-  ( ( F  |`  X )  |`  X )  =  ( F  |`  X )
65cnveqi 4856 . . . . . . . . . 10  |-  `' ( ( F  |`  X )  |`  X )  =  `' ( F  |`  X )
76imaeq1i 5009 . . . . . . . . 9  |-  ( `' ( ( F  |`  X )  |`  X )
" s )  =  ( `' ( F  |`  X ) " s
)
8 cnvresima 5162 . . . . . . . . 9  |-  ( `' ( ( F  |`  X )  |`  X )
" s )  =  ( ( `' ( F  |`  X ) " s )  i^i 
X )
9 cnvresima 5162 . . . . . . . . 9  |-  ( `' ( F  |`  X )
" s )  =  ( ( `' F " s )  i^i  X
)
107, 8, 93eqtr3i 2311 . . . . . . . 8  |-  ( ( `' ( F  |`  X ) " s
)  i^i  X )  =  ( ( `' F " s )  i^i  X )
1110eleq1i 2346 . . . . . . 7  |-  ( ( ( `' ( F  |`  X ) " s
)  i^i  X )  e.  J  <->  ( ( `' F " s )  i^i  X )  e.  J )
1211a1i 10 . . . . . 6  |-  ( s  e.  ~P ( F
" X )  -> 
( ( ( `' ( F  |`  X )
" s )  i^i 
X )  e.  J  <->  ( ( `' F "
s )  i^i  X
)  e.  J ) )
1312rabbiia 2778 . . . . 5  |-  { s  e.  ~P ( F
" X )  |  ( ( `' ( F  |`  X ) " s )  i^i 
X )  e.  J }  =  { s  e.  ~P ( F " X )  |  ( ( `' F "
s )  i^i  X
)  e.  J }
144, 13eqtr2i 2304 . . . 4  |-  { s  e.  ~P ( F
" X )  |  ( ( `' F " s )  i^i  X
)  e.  J }  =  { s  e.  ~P ( ( F  |`  X ) " X
)  |  ( ( `' ( F  |`  X ) " s
)  i^i  X )  e.  J }
15 qtopval.1 . . . . 5  |-  X  = 
U. J
1615qtopval 17386 . . . 4  |-  ( ( J  e.  _V  /\  F  e.  V )  ->  ( J qTop  F )  =  { s  e. 
~P ( F " X )  |  ( ( `' F "
s )  i^i  X
)  e.  J }
)
17 resexg 4994 . . . . 5  |-  ( F  e.  V  ->  ( F  |`  X )  e. 
_V )
1815qtopval 17386 . . . . 5  |-  ( ( J  e.  _V  /\  ( F  |`  X )  e.  _V )  -> 
( J qTop  ( F  |`  X ) )  =  { s  e.  ~P ( ( F  |`  X ) " X
)  |  ( ( `' ( F  |`  X ) " s
)  i^i  X )  e.  J } )
1917, 18sylan2 460 . . . 4  |-  ( ( J  e.  _V  /\  F  e.  V )  ->  ( J qTop  ( F  |`  X ) )  =  { s  e.  ~P ( ( F  |`  X ) " X
)  |  ( ( `' ( F  |`  X ) " s
)  i^i  X )  e.  J } )
2014, 16, 193eqtr4a 2341 . . 3  |-  ( ( J  e.  _V  /\  F  e.  V )  ->  ( J qTop  F )  =  ( J qTop  ( F  |`  X ) ) )
2120expcom 424 . 2  |-  ( F  e.  V  ->  ( J  e.  _V  ->  ( J qTop  F )  =  ( J qTop  ( F  |`  X ) ) ) )
22 df-qtop 13410 . . . . 5  |- qTop  =  ( j  e.  _V , 
f  e.  _V  |->  { s  e.  ~P (
f " U. j
)  |  ( ( `' f " s
)  i^i  U. j
)  e.  j } )
2322reldmmpt2 5955 . . . 4  |-  Rel  dom qTop
2423ovprc1 5886 . . 3  |-  ( -.  J  e.  _V  ->  ( J qTop  F )  =  (/) )
2523ovprc1 5886 . . 3  |-  ( -.  J  e.  _V  ->  ( J qTop  ( F  |`  X ) )  =  (/) )
2624, 25eqtr4d 2318 . 2  |-  ( -.  J  e.  _V  ->  ( J qTop  F )  =  ( J qTop  ( F  |`  X ) ) )
2721, 26pm2.61d1 151 1  |-  ( F  e.  V  ->  ( J qTop  F )  =  ( J qTop  ( F  |`  X ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   {crab 2547   _Vcvv 2788    i^i cin 3151   (/)c0 3455   ~Pcpw 3625   U.cuni 3827   `'ccnv 4688    |` cres 4691   "cima 4692  (class class class)co 5858   qTop cqtop 13406
This theorem is referenced by:  qtoptop2  17390
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-qtop 13410
  Copyright terms: Public domain W3C validator