MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopval Unicode version

Theorem qtopval 17486
Description: Value of the quotient topology function. (Contributed by Mario Carneiro, 23-Mar-2015.)
Hypothesis
Ref Expression
qtopval.1  |-  X  = 
U. J
Assertion
Ref Expression
qtopval  |-  ( ( J  e.  V  /\  F  e.  W )  ->  ( J qTop  F )  =  { s  e. 
~P ( F " X )  |  ( ( `' F "
s )  i^i  X
)  e.  J }
)
Distinct variable groups:    F, s    J, s    V, s    X, s
Allowed substitution hint:    W( s)

Proof of Theorem qtopval
Dummy variables  f 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2872 . 2  |-  ( J  e.  V  ->  J  e.  _V )
2 elex 2872 . 2  |-  ( F  e.  W  ->  F  e.  _V )
3 imaexg 5105 . . . . 5  |-  ( F  e.  _V  ->  ( F " X )  e. 
_V )
4 pwexg 4273 . . . . 5  |-  ( ( F " X )  e.  _V  ->  ~P ( F " X )  e.  _V )
5 rabexg 4243 . . . . 5  |-  ( ~P ( F " X
)  e.  _V  ->  { s  e.  ~P ( F " X )  |  ( ( `' F " s )  i^i  X
)  e.  J }  e.  _V )
63, 4, 53syl 18 . . . 4  |-  ( F  e.  _V  ->  { s  e.  ~P ( F
" X )  |  ( ( `' F " s )  i^i  X
)  e.  J }  e.  _V )
76adantl 452 . . 3  |-  ( ( J  e.  _V  /\  F  e.  _V )  ->  { s  e.  ~P ( F " X )  |  ( ( `' F " s )  i^i  X )  e.  J }  e.  _V )
8 simpr 447 . . . . . . . 8  |-  ( ( j  =  J  /\  f  =  F )  ->  f  =  F )
98imaeq1d 5090 . . . . . . 7  |-  ( ( j  =  J  /\  f  =  F )  ->  ( f " U. j )  =  ( F " U. j
) )
10 simpl 443 . . . . . . . . . 10  |-  ( ( j  =  J  /\  f  =  F )  ->  j  =  J )
1110unieqd 3917 . . . . . . . . 9  |-  ( ( j  =  J  /\  f  =  F )  ->  U. j  =  U. J )
12 qtopval.1 . . . . . . . . 9  |-  X  = 
U. J
1311, 12syl6eqr 2408 . . . . . . . 8  |-  ( ( j  =  J  /\  f  =  F )  ->  U. j  =  X )
1413imaeq2d 5091 . . . . . . 7  |-  ( ( j  =  J  /\  f  =  F )  ->  ( F " U. j )  =  ( F " X ) )
159, 14eqtrd 2390 . . . . . 6  |-  ( ( j  =  J  /\  f  =  F )  ->  ( f " U. j )  =  ( F " X ) )
1615pweqd 3706 . . . . 5  |-  ( ( j  =  J  /\  f  =  F )  ->  ~P ( f " U. j )  =  ~P ( F " X ) )
178cnveqd 4936 . . . . . . . 8  |-  ( ( j  =  J  /\  f  =  F )  ->  `' f  =  `' F )
1817imaeq1d 5090 . . . . . . 7  |-  ( ( j  =  J  /\  f  =  F )  ->  ( `' f "
s )  =  ( `' F " s ) )
1918, 13ineq12d 3447 . . . . . 6  |-  ( ( j  =  J  /\  f  =  F )  ->  ( ( `' f
" s )  i^i  U. j )  =  ( ( `' F "
s )  i^i  X
) )
2019, 10eleq12d 2426 . . . . 5  |-  ( ( j  =  J  /\  f  =  F )  ->  ( ( ( `' f " s )  i^i  U. j )  e.  j  <->  ( ( `' F " s )  i^i  X )  e.  J ) )
2116, 20rabeqbidv 2859 . . . 4  |-  ( ( j  =  J  /\  f  =  F )  ->  { s  e.  ~P ( f " U. j )  |  ( ( `' f "
s )  i^i  U. j )  e.  j }  =  { s  e.  ~P ( F
" X )  |  ( ( `' F " s )  i^i  X
)  e.  J }
)
22 df-qtop 13503 . . . 4  |- qTop  =  ( j  e.  _V , 
f  e.  _V  |->  { s  e.  ~P (
f " U. j
)  |  ( ( `' f " s
)  i^i  U. j
)  e.  j } )
2321, 22ovmpt2ga 6061 . . 3  |-  ( ( J  e.  _V  /\  F  e.  _V  /\  {
s  e.  ~P ( F " X )  |  ( ( `' F " s )  i^i  X
)  e.  J }  e.  _V )  ->  ( J qTop  F )  =  {
s  e.  ~P ( F " X )  |  ( ( `' F " s )  i^i  X
)  e.  J }
)
247, 23mpd3an3 1278 . 2  |-  ( ( J  e.  _V  /\  F  e.  _V )  ->  ( J qTop  F )  =  { s  e. 
~P ( F " X )  |  ( ( `' F "
s )  i^i  X
)  e.  J }
)
251, 2, 24syl2an 463 1  |-  ( ( J  e.  V  /\  F  e.  W )  ->  ( J qTop  F )  =  { s  e. 
~P ( F " X )  |  ( ( `' F "
s )  i^i  X
)  e.  J }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1642    e. wcel 1710   {crab 2623   _Vcvv 2864    i^i cin 3227   ~Pcpw 3701   U.cuni 3906   `'ccnv 4767   "cima 4771  (class class class)co 5942   qTop cqtop 13499
This theorem is referenced by:  qtopval2  17487  qtopres  17489  imastopn  17511
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-sbc 3068  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3907  df-br 4103  df-opab 4157  df-id 4388  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fv 5342  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-qtop 13503
  Copyright terms: Public domain W3C validator