MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quart1lem Structured version   Unicode version

Theorem quart1lem 20695
Description: Lemma for quart1 20696. (Contributed by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
quart1.a  |-  ( ph  ->  A  e.  CC )
quart1.b  |-  ( ph  ->  B  e.  CC )
quart1.c  |-  ( ph  ->  C  e.  CC )
quart1.d  |-  ( ph  ->  D  e.  CC )
quart1.p  |-  ( ph  ->  P  =  ( B  -  ( ( 3  /  8 )  x.  ( A ^ 2 ) ) ) )
quart1.q  |-  ( ph  ->  Q  =  ( ( C  -  ( ( A  x.  B )  /  2 ) )  +  ( ( A ^ 3 )  / 
8 ) ) )
quart1.r  |-  ( ph  ->  R  =  ( ( D  -  ( ( C  x.  A )  /  4 ) )  +  ( ( ( ( A ^ 2 )  x.  B )  / ; 1 6 )  -  ( ( 3  / ;; 2 5 6 )  x.  ( A ^
4 ) ) ) ) )
quart1.x  |-  ( ph  ->  X  e.  CC )
quart1.y  |-  ( ph  ->  Y  =  ( X  +  ( A  / 
4 ) ) )
Assertion
Ref Expression
quart1lem  |-  ( ph  ->  D  =  ( ( ( ( A ^
4 )  / ;; 2 5 6 )  +  ( P  x.  (
( A  /  4
) ^ 2 ) ) )  +  ( ( Q  x.  ( A  /  4 ) )  +  R ) ) )

Proof of Theorem quart1lem
StepHypRef Expression
1 quart1.c . . . . . . . . 9  |-  ( ph  ->  C  e.  CC )
2 quart1.a . . . . . . . . . . 11  |-  ( ph  ->  A  e.  CC )
3 quart1.b . . . . . . . . . . 11  |-  ( ph  ->  B  e.  CC )
42, 3mulcld 9108 . . . . . . . . . 10  |-  ( ph  ->  ( A  x.  B
)  e.  CC )
54halfcld 10212 . . . . . . . . 9  |-  ( ph  ->  ( ( A  x.  B )  /  2
)  e.  CC )
61, 5subcld 9411 . . . . . . . 8  |-  ( ph  ->  ( C  -  (
( A  x.  B
)  /  2 ) )  e.  CC )
7 3nn0 10239 . . . . . . . . . 10  |-  3  e.  NN0
8 expcl 11399 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  3  e.  NN0 )  -> 
( A ^ 3 )  e.  CC )
92, 7, 8sylancl 644 . . . . . . . . 9  |-  ( ph  ->  ( A ^ 3 )  e.  CC )
10 8nn 10139 . . . . . . . . . . 11  |-  8  e.  NN
1110nncni 10010 . . . . . . . . . 10  |-  8  e.  CC
1211a1i 11 . . . . . . . . 9  |-  ( ph  ->  8  e.  CC )
1310nnne0i 10034 . . . . . . . . . 10  |-  8  =/=  0
1413a1i 11 . . . . . . . . 9  |-  ( ph  ->  8  =/=  0 )
159, 12, 14divcld 9790 . . . . . . . 8  |-  ( ph  ->  ( ( A ^
3 )  /  8
)  e.  CC )
16 4cn 10074 . . . . . . . . . 10  |-  4  e.  CC
1716a1i 11 . . . . . . . . 9  |-  ( ph  ->  4  e.  CC )
18 4nn 10135 . . . . . . . . . . 11  |-  4  e.  NN
1918nnne0i 10034 . . . . . . . . . 10  |-  4  =/=  0
2019a1i 11 . . . . . . . . 9  |-  ( ph  ->  4  =/=  0 )
212, 17, 20divcld 9790 . . . . . . . 8  |-  ( ph  ->  ( A  /  4
)  e.  CC )
226, 15, 21adddird 9113 . . . . . . 7  |-  ( ph  ->  ( ( ( C  -  ( ( A  x.  B )  / 
2 ) )  +  ( ( A ^
3 )  /  8
) )  x.  ( A  /  4 ) )  =  ( ( ( C  -  ( ( A  x.  B )  /  2 ) )  x.  ( A  / 
4 ) )  +  ( ( ( A ^ 3 )  / 
8 )  x.  ( A  /  4 ) ) ) )
23 quart1.q . . . . . . . 8  |-  ( ph  ->  Q  =  ( ( C  -  ( ( A  x.  B )  /  2 ) )  +  ( ( A ^ 3 )  / 
8 ) ) )
2423oveq1d 6096 . . . . . . 7  |-  ( ph  ->  ( Q  x.  ( A  /  4 ) )  =  ( ( ( C  -  ( ( A  x.  B )  /  2 ) )  +  ( ( A ^ 3 )  / 
8 ) )  x.  ( A  /  4
) ) )
251, 2, 17, 20divassd 9825 . . . . . . . . . 10  |-  ( ph  ->  ( ( C  x.  A )  /  4
)  =  ( C  x.  ( A  / 
4 ) ) )
262sqvald 11520 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A ^ 2 )  =  ( A  x.  A ) )
2726oveq1d 6096 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( A ^
2 )  x.  B
)  =  ( ( A  x.  A )  x.  B ) )
282, 2, 3mul32d 9276 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( A  x.  A )  x.  B
)  =  ( ( A  x.  B )  x.  A ) )
2927, 28eqtrd 2468 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( A ^
2 )  x.  B
)  =  ( ( A  x.  B )  x.  A ) )
3029oveq1d 6096 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( A ^ 2 )  x.  B )  /  8
)  =  ( ( ( A  x.  B
)  x.  A )  /  8 ) )
31 2cn 10070 . . . . . . . . . . . . . 14  |-  2  e.  CC
32 4t2e8 10130 . . . . . . . . . . . . . 14  |-  ( 4  x.  2 )  =  8
3316, 31, 32mulcomli 9097 . . . . . . . . . . . . 13  |-  ( 2  x.  4 )  =  8
3433oveq2i 6092 . . . . . . . . . . . 12  |-  ( ( ( A  x.  B
)  x.  A )  /  ( 2  x.  4 ) )  =  ( ( ( A  x.  B )  x.  A )  /  8
)
3530, 34syl6eqr 2486 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( A ^ 2 )  x.  B )  /  8
)  =  ( ( ( A  x.  B
)  x.  A )  /  ( 2  x.  4 ) ) )
3631a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  2  e.  CC )
37 2ne0 10083 . . . . . . . . . . . . 13  |-  2  =/=  0
3837a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  2  =/=  0 )
394, 36, 2, 17, 38, 20divmuldivd 9831 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( A  x.  B )  / 
2 )  x.  ( A  /  4 ) )  =  ( ( ( A  x.  B )  x.  A )  / 
( 2  x.  4 ) ) )
4035, 39eqtr4d 2471 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( A ^ 2 )  x.  B )  /  8
)  =  ( ( ( A  x.  B
)  /  2 )  x.  ( A  / 
4 ) ) )
4125, 40oveq12d 6099 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C  x.  A )  / 
4 )  -  (
( ( A ^
2 )  x.  B
)  /  8 ) )  =  ( ( C  x.  ( A  /  4 ) )  -  ( ( ( A  x.  B )  /  2 )  x.  ( A  /  4
) ) ) )
421, 5, 21subdird 9490 . . . . . . . . 9  |-  ( ph  ->  ( ( C  -  ( ( A  x.  B )  /  2
) )  x.  ( A  /  4 ) )  =  ( ( C  x.  ( A  / 
4 ) )  -  ( ( ( A  x.  B )  / 
2 )  x.  ( A  /  4 ) ) ) )
4341, 42eqtr4d 2471 . . . . . . . 8  |-  ( ph  ->  ( ( ( C  x.  A )  / 
4 )  -  (
( ( A ^
2 )  x.  B
)  /  8 ) )  =  ( ( C  -  ( ( A  x.  B )  /  2 ) )  x.  ( A  / 
4 ) ) )
44 df-4 10060 . . . . . . . . . . . . . 14  |-  4  =  ( 3  +  1 )
4544oveq2i 6092 . . . . . . . . . . . . 13  |-  ( A ^ 4 )  =  ( A ^ (
3  +  1 ) )
46 expp1 11388 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  3  e.  NN0 )  -> 
( A ^ (
3  +  1 ) )  =  ( ( A ^ 3 )  x.  A ) )
472, 7, 46sylancl 644 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A ^ (
3  +  1 ) )  =  ( ( A ^ 3 )  x.  A ) )
4845, 47syl5eq 2480 . . . . . . . . . . . 12  |-  ( ph  ->  ( A ^ 4 )  =  ( ( A ^ 3 )  x.  A ) )
4948oveq1d 6096 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A ^
4 )  /  8
)  =  ( ( ( A ^ 3 )  x.  A )  /  8 ) )
509, 2, 12, 14div23d 9827 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( A ^ 3 )  x.  A )  /  8
)  =  ( ( ( A ^ 3 )  /  8 )  x.  A ) )
5149, 50eqtrd 2468 . . . . . . . . . 10  |-  ( ph  ->  ( ( A ^
4 )  /  8
)  =  ( ( ( A ^ 3 )  /  8 )  x.  A ) )
5251oveq1d 6096 . . . . . . . . 9  |-  ( ph  ->  ( ( ( A ^ 4 )  / 
8 )  /  4
)  =  ( ( ( ( A ^
3 )  /  8
)  x.  A )  /  4 ) )
5315, 2, 17, 20divassd 9825 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( A ^ 3 )  /  8 )  x.  A )  /  4
)  =  ( ( ( A ^ 3 )  /  8 )  x.  ( A  / 
4 ) ) )
5452, 53eqtrd 2468 . . . . . . . 8  |-  ( ph  ->  ( ( ( A ^ 4 )  / 
8 )  /  4
)  =  ( ( ( A ^ 3 )  /  8 )  x.  ( A  / 
4 ) ) )
5543, 54oveq12d 6099 . . . . . . 7  |-  ( ph  ->  ( ( ( ( C  x.  A )  /  4 )  -  ( ( ( A ^ 2 )  x.  B )  /  8
) )  +  ( ( ( A ^
4 )  /  8
)  /  4 ) )  =  ( ( ( C  -  (
( A  x.  B
)  /  2 ) )  x.  ( A  /  4 ) )  +  ( ( ( A ^ 3 )  /  8 )  x.  ( A  /  4
) ) ) )
5622, 24, 553eqtr4d 2478 . . . . . 6  |-  ( ph  ->  ( Q  x.  ( A  /  4 ) )  =  ( ( ( ( C  x.  A
)  /  4 )  -  ( ( ( A ^ 2 )  x.  B )  / 
8 ) )  +  ( ( ( A ^ 4 )  / 
8 )  /  4
) ) )
571, 2mulcld 9108 . . . . . . . 8  |-  ( ph  ->  ( C  x.  A
)  e.  CC )
5857, 17, 20divcld 9790 . . . . . . 7  |-  ( ph  ->  ( ( C  x.  A )  /  4
)  e.  CC )
592sqcld 11521 . . . . . . . . 9  |-  ( ph  ->  ( A ^ 2 )  e.  CC )
6059, 3mulcld 9108 . . . . . . . 8  |-  ( ph  ->  ( ( A ^
2 )  x.  B
)  e.  CC )
6160, 12, 14divcld 9790 . . . . . . 7  |-  ( ph  ->  ( ( ( A ^ 2 )  x.  B )  /  8
)  e.  CC )
62 4nn0 10240 . . . . . . . . . 10  |-  4  e.  NN0
63 expcl 11399 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  4  e.  NN0 )  -> 
( A ^ 4 )  e.  CC )
642, 62, 63sylancl 644 . . . . . . . . 9  |-  ( ph  ->  ( A ^ 4 )  e.  CC )
6564, 12, 14divcld 9790 . . . . . . . 8  |-  ( ph  ->  ( ( A ^
4 )  /  8
)  e.  CC )
6665, 17, 20divcld 9790 . . . . . . 7  |-  ( ph  ->  ( ( ( A ^ 4 )  / 
8 )  /  4
)  e.  CC )
6758, 61, 66subadd23d 9433 . . . . . 6  |-  ( ph  ->  ( ( ( ( C  x.  A )  /  4 )  -  ( ( ( A ^ 2 )  x.  B )  /  8
) )  +  ( ( ( A ^
4 )  /  8
)  /  4 ) )  =  ( ( ( C  x.  A
)  /  4 )  +  ( ( ( ( A ^ 4 )  /  8 )  /  4 )  -  ( ( ( A ^ 2 )  x.  B )  /  8
) ) ) )
6866, 61subcld 9411 . . . . . . 7  |-  ( ph  ->  ( ( ( ( A ^ 4 )  /  8 )  / 
4 )  -  (
( ( A ^
2 )  x.  B
)  /  8 ) )  e.  CC )
6958, 68addcomd 9268 . . . . . 6  |-  ( ph  ->  ( ( ( C  x.  A )  / 
4 )  +  ( ( ( ( A ^ 4 )  / 
8 )  /  4
)  -  ( ( ( A ^ 2 )  x.  B )  /  8 ) ) )  =  ( ( ( ( ( A ^ 4 )  / 
8 )  /  4
)  -  ( ( ( A ^ 2 )  x.  B )  /  8 ) )  +  ( ( C  x.  A )  / 
4 ) ) )
7056, 67, 693eqtrd 2472 . . . . 5  |-  ( ph  ->  ( Q  x.  ( A  /  4 ) )  =  ( ( ( ( ( A ^
4 )  /  8
)  /  4 )  -  ( ( ( A ^ 2 )  x.  B )  / 
8 ) )  +  ( ( C  x.  A )  /  4
) ) )
71 quart1.r . . . . . 6  |-  ( ph  ->  R  =  ( ( D  -  ( ( C  x.  A )  /  4 ) )  +  ( ( ( ( A ^ 2 )  x.  B )  / ; 1 6 )  -  ( ( 3  / ;; 2 5 6 )  x.  ( A ^
4 ) ) ) ) )
72 quart1.d . . . . . . 7  |-  ( ph  ->  D  e.  CC )
73 1nn0 10237 . . . . . . . . . . . 12  |-  1  e.  NN0
74 6nn 10137 . . . . . . . . . . . 12  |-  6  e.  NN
7573, 74decnncl 10395 . . . . . . . . . . 11  |- ; 1 6  e.  NN
7675nncni 10010 . . . . . . . . . 10  |- ; 1 6  e.  CC
7776a1i 11 . . . . . . . . 9  |-  ( ph  -> ; 1
6  e.  CC )
7875nnne0i 10034 . . . . . . . . . 10  |- ; 1 6  =/=  0
7978a1i 11 . . . . . . . . 9  |-  ( ph  -> ; 1
6  =/=  0 )
8060, 77, 79divcld 9790 . . . . . . . 8  |-  ( ph  ->  ( ( ( A ^ 2 )  x.  B )  / ; 1 6 )  e.  CC )
81 3cn 10072 . . . . . . . . . 10  |-  3  e.  CC
82 2nn0 10238 . . . . . . . . . . . . 13  |-  2  e.  NN0
83 5nn0 10241 . . . . . . . . . . . . 13  |-  5  e.  NN0
8482, 83deccl 10396 . . . . . . . . . . . 12  |- ; 2 5  e.  NN0
8584, 74decnncl 10395 . . . . . . . . . . 11  |- ;; 2 5 6  e.  NN
8685nncni 10010 . . . . . . . . . 10  |- ;; 2 5 6  e.  CC
8785nnne0i 10034 . . . . . . . . . 10  |- ;; 2 5 6  =/=  0
8881, 86, 87divcli 9756 . . . . . . . . 9  |-  ( 3  / ;; 2 5 6 )  e.  CC
89 mulcl 9074 . . . . . . . . 9  |-  ( ( ( 3  / ;; 2 5 6 )  e.  CC  /\  ( A ^ 4 )  e.  CC )  ->  (
( 3  / ;; 2 5 6 )  x.  ( A ^ 4 ) )  e.  CC )
9088, 64, 89sylancr 645 . . . . . . . 8  |-  ( ph  ->  ( ( 3  / ;; 2 5 6 )  x.  ( A ^
4 ) )  e.  CC )
9180, 90subcld 9411 . . . . . . 7  |-  ( ph  ->  ( ( ( ( A ^ 2 )  x.  B )  / ; 1 6 )  -  ( ( 3  / ;; 2 5 6 )  x.  ( A ^ 4 ) ) )  e.  CC )
9272, 91, 58addsubd 9432 . . . . . 6  |-  ( ph  ->  ( ( D  +  ( ( ( ( A ^ 2 )  x.  B )  / ; 1 6 )  -  ( ( 3  / ;; 2 5 6 )  x.  ( A ^ 4 ) ) ) )  -  ( ( C  x.  A )  / 
4 ) )  =  ( ( D  -  ( ( C  x.  A )  /  4
) )  +  ( ( ( ( A ^ 2 )  x.  B )  / ; 1 6 )  -  ( ( 3  / ;; 2 5 6 )  x.  ( A ^
4 ) ) ) ) )
9371, 92eqtr4d 2471 . . . . 5  |-  ( ph  ->  R  =  ( ( D  +  ( ( ( ( A ^
2 )  x.  B
)  / ; 1 6 )  -  ( ( 3  / ;; 2 5 6 )  x.  ( A ^
4 ) ) ) )  -  ( ( C  x.  A )  /  4 ) ) )
9470, 93oveq12d 6099 . . . 4  |-  ( ph  ->  ( ( Q  x.  ( A  /  4
) )  +  R
)  =  ( ( ( ( ( ( A ^ 4 )  /  8 )  / 
4 )  -  (
( ( A ^
2 )  x.  B
)  /  8 ) )  +  ( ( C  x.  A )  /  4 ) )  +  ( ( D  +  ( ( ( ( A ^ 2 )  x.  B )  / ; 1 6 )  -  ( ( 3  / ;; 2 5 6 )  x.  ( A ^
4 ) ) ) )  -  ( ( C  x.  A )  /  4 ) ) ) )
9572, 91addcld 9107 . . . . 5  |-  ( ph  ->  ( D  +  ( ( ( ( A ^ 2 )  x.  B )  / ; 1 6 )  -  ( ( 3  / ;; 2 5 6 )  x.  ( A ^
4 ) ) ) )  e.  CC )
9668, 58, 95ppncand 9451 . . . 4  |-  ( ph  ->  ( ( ( ( ( ( A ^
4 )  /  8
)  /  4 )  -  ( ( ( A ^ 2 )  x.  B )  / 
8 ) )  +  ( ( C  x.  A )  /  4
) )  +  ( ( D  +  ( ( ( ( A ^ 2 )  x.  B )  / ; 1 6 )  -  ( ( 3  / ;; 2 5 6 )  x.  ( A ^
4 ) ) ) )  -  ( ( C  x.  A )  /  4 ) ) )  =  ( ( ( ( ( A ^ 4 )  / 
8 )  /  4
)  -  ( ( ( A ^ 2 )  x.  B )  /  8 ) )  +  ( D  +  ( ( ( ( A ^ 2 )  x.  B )  / ; 1 6 )  -  ( ( 3  / ;; 2 5 6 )  x.  ( A ^ 4 ) ) ) ) ) )
9768, 72, 91add12d 9287 . . . . 5  |-  ( ph  ->  ( ( ( ( ( A ^ 4 )  /  8 )  /  4 )  -  ( ( ( A ^ 2 )  x.  B )  /  8
) )  +  ( D  +  ( ( ( ( A ^
2 )  x.  B
)  / ; 1 6 )  -  ( ( 3  / ;; 2 5 6 )  x.  ( A ^
4 ) ) ) ) )  =  ( D  +  ( ( ( ( ( A ^ 4 )  / 
8 )  /  4
)  -  ( ( ( A ^ 2 )  x.  B )  /  8 ) )  +  ( ( ( ( A ^ 2 )  x.  B )  / ; 1 6 )  -  ( ( 3  / ;; 2 5 6 )  x.  ( A ^
4 ) ) ) ) ) )
9861, 90addcld 9107 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( A ^ 2 )  x.  B )  / 
8 )  +  ( ( 3  / ;; 2 5 6 )  x.  ( A ^ 4 ) ) )  e.  CC )
9966, 80addcld 9107 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( A ^ 4 )  /  8 )  / 
4 )  +  ( ( ( A ^
2 )  x.  B
)  / ; 1 6 ) )  e.  CC )
10098, 99negsubdi2d 9427 . . . . . . 7  |-  ( ph  -> 
-u ( ( ( ( ( A ^
2 )  x.  B
)  /  8 )  +  ( ( 3  / ;; 2 5 6 )  x.  ( A ^ 4 ) ) )  -  ( ( ( ( A ^
4 )  /  8
)  /  4 )  +  ( ( ( A ^ 2 )  x.  B )  / ; 1 6 ) ) )  =  ( ( ( ( ( A ^ 4 )  /  8 )  /  4 )  +  ( ( ( A ^ 2 )  x.  B )  / ; 1 6 ) )  -  ( ( ( ( A ^ 2 )  x.  B )  /  8 )  +  ( ( 3  / ;; 2 5 6 )  x.  ( A ^
4 ) ) ) ) )
10166, 80addcomd 9268 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( A ^ 4 )  /  8 )  / 
4 )  +  ( ( ( A ^
2 )  x.  B
)  / ; 1 6 ) )  =  ( ( ( ( A ^ 2 )  x.  B )  / ; 1 6 )  +  ( ( ( A ^ 4 )  / 
8 )  /  4
) ) )
102101oveq2d 6097 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( ( A ^ 2 )  x.  B )  /  8 )  +  ( ( 3  / ;; 2 5 6 )  x.  ( A ^
4 ) ) )  -  ( ( ( ( A ^ 4 )  /  8 )  /  4 )  +  ( ( ( A ^ 2 )  x.  B )  / ; 1 6 ) ) )  =  ( ( ( ( ( A ^ 2 )  x.  B )  /  8
)  +  ( ( 3  / ;; 2 5 6 )  x.  ( A ^ 4 ) ) )  -  ( ( ( ( A ^ 2 )  x.  B )  / ; 1 6 )  +  ( ( ( A ^ 4 )  /  8 )  /  4 ) ) ) )
10361, 90, 80, 66addsub4d 9458 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( ( A ^ 2 )  x.  B )  /  8 )  +  ( ( 3  / ;; 2 5 6 )  x.  ( A ^
4 ) ) )  -  ( ( ( ( A ^ 2 )  x.  B )  / ; 1 6 )  +  ( ( ( A ^ 4 )  / 
8 )  /  4
) ) )  =  ( ( ( ( ( A ^ 2 )  x.  B )  /  8 )  -  ( ( ( A ^ 2 )  x.  B )  / ; 1 6 ) )  +  ( ( ( 3  / ;; 2 5 6 )  x.  ( A ^ 4 ) )  -  (
( ( A ^
4 )  /  8
)  /  4 ) ) ) )
10481a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  3  e.  CC )
10586a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ph  -> ;; 2 5 6  e.  CC )
10687a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ph  -> ;; 2 5 6  =/=  0 )
107104, 64, 105, 106divassd 9825 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 3  x.  ( A ^ 4 ) )  / ;; 2 5 6 )  =  ( 3  x.  (
( A ^ 4 )  / ;; 2 5 6 ) ) )
108104, 64, 105, 106div23d 9827 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 3  x.  ( A ^ 4 ) )  / ;; 2 5 6 )  =  ( ( 3  / ;; 2 5 6 )  x.  ( A ^
4 ) ) )
109 ax-1cn 9048 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  CC
110 2p1e3 10103 . . . . . . . . . . . . . . . . . . 19  |-  ( 2  +  1 )  =  3
11131, 109, 110addcomli 9258 . . . . . . . . . . . . . . . . . 18  |-  ( 1  +  2 )  =  3
112111oveq1i 6091 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  +  2 )  x.  ( ( A ^ 4 )  / ;; 2 5 6 ) )  =  ( 3  x.  ( ( A ^ 4 )  / ;; 2 5 6 ) )
113109a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  1  e.  CC )
11464, 105, 106divcld 9790 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( A ^
4 )  / ;; 2 5 6 )  e.  CC )
115113, 36, 114adddird 9113 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 1  +  2 )  x.  (
( A ^ 4 )  / ;; 2 5 6 ) )  =  ( ( 1  x.  ( ( A ^ 4 )  / ;; 2 5 6 ) )  +  ( 2  x.  ( ( A ^ 4 )  / ;; 2 5 6 ) ) ) )
116112, 115syl5eqr 2482 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 3  x.  (
( A ^ 4 )  / ;; 2 5 6 ) )  =  ( ( 1  x.  ( ( A ^ 4 )  / ;; 2 5 6 ) )  +  ( 2  x.  ( ( A ^ 4 )  / ;; 2 5 6 ) ) ) )
117114mulid2d 9106 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 1  x.  (
( A ^ 4 )  / ;; 2 5 6 ) )  =  ( ( A ^ 4 )  / ;; 2 5 6 ) )
118117oveq1d 6096 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( 1  x.  ( ( A ^
4 )  / ;; 2 5 6 ) )  +  ( 2  x.  ( ( A ^
4 )  / ;; 2 5 6 ) ) )  =  ( ( ( A ^ 4 )  / ;; 2 5 6 )  +  ( 2  x.  (
( A ^ 4 )  / ;; 2 5 6 ) ) ) )
119116, 118eqtrd 2468 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 3  x.  (
( A ^ 4 )  / ;; 2 5 6 ) )  =  ( ( ( A ^ 4 )  / ;; 2 5 6 )  +  ( 2  x.  ( ( A ^ 4 )  / ;; 2 5 6 ) ) ) )
120107, 108, 1193eqtr3d 2476 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 3  / ;; 2 5 6 )  x.  ( A ^
4 ) )  =  ( ( ( A ^ 4 )  / ;; 2 5 6 )  +  ( 2  x.  ( ( A ^
4 )  / ;; 2 5 6 ) ) ) )
12144oveq1i 6091 . . . . . . . . . . . . . . . 16  |-  ( 4  x.  ( ( ( ( A ^ 4 )  /  8 )  /  4 )  / 
4 ) )  =  ( ( 3  +  1 )  x.  (
( ( ( A ^ 4 )  / 
8 )  /  4
)  /  4 ) )
12266, 17, 20divcld 9790 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( ( ( A ^ 4 )  /  8 )  / 
4 )  /  4
)  e.  CC )
123104, 113, 122adddird 9113 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( 3  +  1 )  x.  (
( ( ( A ^ 4 )  / 
8 )  /  4
)  /  4 ) )  =  ( ( 3  x.  ( ( ( ( A ^
4 )  /  8
)  /  4 )  /  4 ) )  +  ( 1  x.  ( ( ( ( A ^ 4 )  /  8 )  / 
4 )  /  4
) ) ) )
124121, 123syl5eq 2480 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 4  x.  (
( ( ( A ^ 4 )  / 
8 )  /  4
)  /  4 ) )  =  ( ( 3  x.  ( ( ( ( A ^
4 )  /  8
)  /  4 )  /  4 ) )  +  ( 1  x.  ( ( ( ( A ^ 4 )  /  8 )  / 
4 )  /  4
) ) ) )
12566, 17, 20divcan2d 9792 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 4  x.  (
( ( ( A ^ 4 )  / 
8 )  /  4
)  /  4 ) )  =  ( ( ( A ^ 4 )  /  8 )  /  4 ) )
126122mulid2d 9106 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 1  x.  (
( ( ( A ^ 4 )  / 
8 )  /  4
)  /  4 ) )  =  ( ( ( ( A ^
4 )  /  8
)  /  4 )  /  4 ) )
12765, 17, 17, 20, 20divdiv1d 9821 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( ( ( A ^ 4 )  /  8 )  / 
4 )  /  4
)  =  ( ( ( A ^ 4 )  /  8 )  /  ( 4  x.  4 ) ) )
128 4t4e16 10455 . . . . . . . . . . . . . . . . . . 19  |-  ( 4  x.  4 )  = ; 1
6
129128oveq2i 6092 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A ^ 4 )  /  8 )  /  ( 4  x.  4 ) )  =  ( ( ( A ^ 4 )  / 
8 )  / ; 1 6 )
130127, 129syl6eq 2484 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( ( ( A ^ 4 )  /  8 )  / 
4 )  /  4
)  =  ( ( ( A ^ 4 )  /  8 )  / ; 1 6 ) )
13164, 12, 77, 14, 79divdiv1d 9821 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( ( A ^ 4 )  / 
8 )  / ; 1 6 )  =  ( ( A ^
4 )  /  (
8  x. ; 1 6 ) ) )
13211, 76mulcli 9095 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 8  x. ; 1 6 )  e.  CC
133132a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( 8  x. ; 1 6 )  e.  CC )
13411, 76, 13, 78mulne0i 9665 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 8  x. ; 1 6 )  =/=  0
135134a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( 8  x. ; 1 6 )  =/=  0 )
13664, 133, 135divcld 9790 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( A ^
4 )  /  (
8  x. ; 1 6 ) )  e.  CC )
137136, 36, 38divcan2d 9792 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( 2  x.  (
( ( A ^
4 )  /  (
8  x. ; 1 6 ) )  /  2 ) )  =  ( ( A ^ 4 )  / 
( 8  x. ; 1 6 ) ) )
13864, 133, 36, 135, 38divdiv1d 9821 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( ( A ^ 4 )  / 
( 8  x. ; 1 6 ) )  /  2 )  =  ( ( A ^
4 )  /  (
( 8  x. ; 1 6 )  x.  2 ) ) )
13911, 76, 31mul32i 9262 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 8  x. ; 1 6 )  x.  2 )  =  ( ( 8  x.  2 )  x. ; 1 6 )
140 2exp4 13421 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 2 ^ 4 )  = ; 1
6
141 8t2e16 10470 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 8  x.  2 )  = ; 1
6
142140, 141eqtr4i 2459 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 2 ^ 4 )  =  ( 8  x.  2 )
143142, 140oveq12i 6093 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 2 ^ 4 )  x.  ( 2 ^ 4 ) )  =  ( ( 8  x.  2 )  x. ; 1 6 )
144 4p4e8 10115 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 4  +  4 )  =  8
145144oveq2i 6092 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 2 ^ ( 4  +  4 ) )  =  ( 2 ^ 8 )
146 expadd 11422 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( 2  e.  CC  /\  4  e.  NN0  /\  4  e.  NN0 )  ->  (
2 ^ ( 4  +  4 ) )  =  ( ( 2 ^ 4 )  x.  ( 2 ^ 4 ) ) )
14731, 62, 62, 146mp3an 1279 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 2 ^ ( 4  +  4 ) )  =  ( ( 2 ^ 4 )  x.  (
2 ^ 4 ) )
148 2exp8 13423 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 2 ^ 8 )  = ;; 2 5 6
149145, 147, 1483eqtr3i 2464 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 2 ^ 4 )  x.  ( 2 ^ 4 ) )  = ;; 2 5 6
150139, 143, 1493eqtr2i 2462 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 8  x. ; 1 6 )  x.  2 )  = ;; 2 5 6
151150oveq2i 6092 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A ^ 4 )  /  ( ( 8  x. ; 1 6 )  x.  2 ) )  =  ( ( A ^
4 )  / ;; 2 5 6 )
152138, 151syl6eq 2484 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( A ^ 4 )  / 
( 8  x. ; 1 6 ) )  /  2 )  =  ( ( A ^
4 )  / ;; 2 5 6 ) )
153152oveq2d 6097 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( 2  x.  (
( ( A ^
4 )  /  (
8  x. ; 1 6 ) )  /  2 ) )  =  ( 2  x.  ( ( A ^
4 )  / ;; 2 5 6 ) ) )
154131, 137, 1533eqtr2d 2474 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( ( A ^ 4 )  / 
8 )  / ; 1 6 )  =  ( 2  x.  (
( A ^ 4 )  / ;; 2 5 6 ) ) )
155126, 130, 1543eqtrd 2472 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 1  x.  (
( ( ( A ^ 4 )  / 
8 )  /  4
)  /  4 ) )  =  ( 2  x.  ( ( A ^ 4 )  / ;; 2 5 6 ) ) )
156155oveq2d 6097 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 3  x.  ( ( ( ( A ^ 4 )  /  8 )  / 
4 )  /  4
) )  +  ( 1  x.  ( ( ( ( A ^
4 )  /  8
)  /  4 )  /  4 ) ) )  =  ( ( 3  x.  ( ( ( ( A ^
4 )  /  8
)  /  4 )  /  4 ) )  +  ( 2  x.  ( ( A ^
4 )  / ;; 2 5 6 ) ) ) )
157124, 125, 1563eqtr3d 2476 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( A ^ 4 )  / 
8 )  /  4
)  =  ( ( 3  x.  ( ( ( ( A ^
4 )  /  8
)  /  4 )  /  4 ) )  +  ( 2  x.  ( ( A ^
4 )  / ;; 2 5 6 ) ) ) )
158120, 157oveq12d 6099 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( 3  / ;; 2 5 6 )  x.  ( A ^ 4 ) )  -  ( ( ( A ^ 4 )  /  8 )  / 
4 ) )  =  ( ( ( ( A ^ 4 )  / ;; 2 5 6 )  +  ( 2  x.  ( ( A ^ 4 )  / ;; 2 5 6 ) ) )  -  ( ( 3  x.  ( ( ( ( A ^ 4 )  /  8 )  /  4 )  / 
4 ) )  +  ( 2  x.  (
( A ^ 4 )  / ;; 2 5 6 ) ) ) ) )
159 mulcl 9074 . . . . . . . . . . . . . . 15  |-  ( ( 3  e.  CC  /\  ( ( ( ( A ^ 4 )  /  8 )  / 
4 )  /  4
)  e.  CC )  ->  ( 3  x.  ( ( ( ( A ^ 4 )  /  8 )  / 
4 )  /  4
) )  e.  CC )
16081, 122, 159sylancr 645 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 3  x.  (
( ( ( A ^ 4 )  / 
8 )  /  4
)  /  4 ) )  e.  CC )
161 mulcl 9074 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  CC  /\  ( ( A ^
4 )  / ;; 2 5 6 )  e.  CC )  ->  (
2  x.  ( ( A ^ 4 )  / ;; 2 5 6 ) )  e.  CC )
16231, 114, 161sylancr 645 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 2  x.  (
( A ^ 4 )  / ;; 2 5 6 ) )  e.  CC )
163114, 160, 162pnpcan2d 9449 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ( A ^ 4 )  / ;; 2 5 6 )  +  ( 2  x.  ( ( A ^ 4 )  / ;; 2 5 6 ) ) )  -  ( ( 3  x.  ( ( ( ( A ^ 4 )  /  8 )  /  4 )  / 
4 ) )  +  ( 2  x.  (
( A ^ 4 )  / ;; 2 5 6 ) ) ) )  =  ( ( ( A ^
4 )  / ;; 2 5 6 )  -  ( 3  x.  (
( ( ( A ^ 4 )  / 
8 )  /  4
)  /  4 ) ) ) )
164158, 163eqtrd 2468 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( 3  / ;; 2 5 6 )  x.  ( A ^ 4 ) )  -  ( ( ( A ^ 4 )  /  8 )  / 
4 ) )  =  ( ( ( A ^ 4 )  / ;; 2 5 6 )  -  ( 3  x.  ( ( ( ( A ^ 4 )  /  8 )  / 
4 )  /  4
) ) ) )
165164oveq2d 6097 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( A ^ 2 )  x.  B )  / ; 1 6 )  +  ( ( ( 3  / ;; 2 5 6 )  x.  ( A ^ 4 ) )  -  (
( ( A ^
4 )  /  8
)  /  4 ) ) )  =  ( ( ( ( A ^ 2 )  x.  B )  / ; 1 6 )  +  ( ( ( A ^ 4 )  / ;; 2 5 6 )  -  ( 3  x.  ( ( ( ( A ^ 4 )  /  8 )  / 
4 )  /  4
) ) ) ) )
16680, 114, 160addsub12d 9434 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( A ^ 2 )  x.  B )  / ; 1 6 )  +  ( ( ( A ^ 4 )  / ;; 2 5 6 )  -  ( 3  x.  (
( ( ( A ^ 4 )  / 
8 )  /  4
)  /  4 ) ) ) )  =  ( ( ( A ^ 4 )  / ;; 2 5 6 )  +  ( ( ( ( A ^ 2 )  x.  B )  / ; 1 6 )  -  ( 3  x.  (
( ( ( A ^ 4 )  / 
8 )  /  4
)  /  4 ) ) ) ) )
167165, 166eqtrd 2468 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( A ^ 2 )  x.  B )  / ; 1 6 )  +  ( ( ( 3  / ;; 2 5 6 )  x.  ( A ^ 4 ) )  -  (
( ( A ^
4 )  /  8
)  /  4 ) ) )  =  ( ( ( A ^
4 )  / ;; 2 5 6 )  +  ( ( ( ( A ^ 2 )  x.  B )  / ; 1 6 )  -  ( 3  x.  ( ( ( ( A ^ 4 )  /  8 )  /  4 )  / 
4 ) ) ) ) )
16860, 12, 36, 14, 38divdiv1d 9821 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( ( A ^ 2 )  x.  B )  / 
8 )  /  2
)  =  ( ( ( A ^ 2 )  x.  B )  /  ( 8  x.  2 ) ) )
169141oveq2i 6092 . . . . . . . . . . . . . . . 16  |-  ( ( ( A ^ 2 )  x.  B )  /  ( 8  x.  2 ) )  =  ( ( ( A ^ 2 )  x.  B )  / ; 1 6 )
170168, 169syl6eq 2484 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( ( A ^ 2 )  x.  B )  / 
8 )  /  2
)  =  ( ( ( A ^ 2 )  x.  B )  / ; 1 6 ) )
171170oveq2d 6097 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 2  x.  (
( ( ( A ^ 2 )  x.  B )  /  8
)  /  2 ) )  =  ( 2  x.  ( ( ( A ^ 2 )  x.  B )  / ; 1 6 ) ) )
17261, 36, 38divcan2d 9792 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 2  x.  (
( ( ( A ^ 2 )  x.  B )  /  8
)  /  2 ) )  =  ( ( ( A ^ 2 )  x.  B )  /  8 ) )
173802timesd 10210 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 2  x.  (
( ( A ^
2 )  x.  B
)  / ; 1 6 ) )  =  ( ( ( ( A ^ 2 )  x.  B )  / ; 1 6 )  +  ( ( ( A ^ 2 )  x.  B )  / ; 1 6 ) ) )
174171, 172, 1733eqtr3d 2476 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( A ^ 2 )  x.  B )  /  8
)  =  ( ( ( ( A ^
2 )  x.  B
)  / ; 1 6 )  +  ( ( ( A ^ 2 )  x.  B )  / ; 1 6 ) ) )
175174oveq1d 6096 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( A ^ 2 )  x.  B )  / 
8 )  -  (
( ( A ^
2 )  x.  B
)  / ; 1 6 ) )  =  ( ( ( ( ( A ^
2 )  x.  B
)  / ; 1 6 )  +  ( ( ( A ^ 2 )  x.  B )  / ; 1 6 ) )  -  ( ( ( A ^ 2 )  x.  B )  / ; 1 6 ) ) )
17680, 80pncand 9412 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( ( A ^ 2 )  x.  B )  / ; 1 6 )  +  ( ( ( A ^ 2 )  x.  B )  / ; 1 6 ) )  -  ( ( ( A ^ 2 )  x.  B )  / ; 1 6 ) )  =  ( ( ( A ^
2 )  x.  B
)  / ; 1 6 ) )
177175, 176eqtrd 2468 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( A ^ 2 )  x.  B )  / 
8 )  -  (
( ( A ^
2 )  x.  B
)  / ; 1 6 ) )  =  ( ( ( A ^ 2 )  x.  B )  / ; 1 6 ) )
178177oveq1d 6096 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( ( A ^ 2 )  x.  B )  /  8 )  -  ( ( ( A ^ 2 )  x.  B )  / ; 1 6 ) )  +  ( ( ( 3  / ;; 2 5 6 )  x.  ( A ^ 4 ) )  -  (
( ( A ^
4 )  /  8
)  /  4 ) ) )  =  ( ( ( ( A ^ 2 )  x.  B )  / ; 1 6 )  +  ( ( ( 3  / ;; 2 5 6 )  x.  ( A ^ 4 ) )  -  ( ( ( A ^ 4 )  /  8 )  / 
4 ) ) ) )
179 quart1.p . . . . . . . . . . . . 13  |-  ( ph  ->  P  =  ( B  -  ( ( 3  /  8 )  x.  ( A ^ 2 ) ) ) )
180179oveq1d 6096 . . . . . . . . . . . 12  |-  ( ph  ->  ( P  x.  (
( A  /  4
) ^ 2 ) )  =  ( ( B  -  ( ( 3  /  8 )  x.  ( A ^
2 ) ) )  x.  ( ( A  /  4 ) ^
2 ) ) )
18181, 11, 13divcli 9756 . . . . . . . . . . . . . 14  |-  ( 3  /  8 )  e.  CC
182 mulcl 9074 . . . . . . . . . . . . . 14  |-  ( ( ( 3  /  8
)  e.  CC  /\  ( A ^ 2 )  e.  CC )  -> 
( ( 3  / 
8 )  x.  ( A ^ 2 ) )  e.  CC )
183181, 59, 182sylancr 645 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 3  / 
8 )  x.  ( A ^ 2 ) )  e.  CC )
18421sqcld 11521 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( A  / 
4 ) ^ 2 )  e.  CC )
1853, 183, 184subdird 9490 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( B  -  ( ( 3  / 
8 )  x.  ( A ^ 2 ) ) )  x.  ( ( A  /  4 ) ^ 2 ) )  =  ( ( B  x.  ( ( A  /  4 ) ^
2 ) )  -  ( ( ( 3  /  8 )  x.  ( A ^ 2 ) )  x.  (
( A  /  4
) ^ 2 ) ) ) )
1862, 17, 20sqdivd 11536 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( A  / 
4 ) ^ 2 )  =  ( ( A ^ 2 )  /  ( 4 ^ 2 ) ) )
18716sqvali 11461 . . . . . . . . . . . . . . . . . 18  |-  ( 4 ^ 2 )  =  ( 4  x.  4 )
188187, 128eqtri 2456 . . . . . . . . . . . . . . . . 17  |-  ( 4 ^ 2 )  = ; 1
6
189188oveq2i 6092 . . . . . . . . . . . . . . . 16  |-  ( ( A ^ 2 )  /  ( 4 ^ 2 ) )  =  ( ( A ^
2 )  / ; 1 6 )
190186, 189syl6eq 2484 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( A  / 
4 ) ^ 2 )  =  ( ( A ^ 2 )  / ; 1 6 ) )
191190oveq2d 6097 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( B  x.  (
( A  /  4
) ^ 2 ) )  =  ( B  x.  ( ( A ^ 2 )  / ; 1 6 ) ) )
1923, 59, 77, 79divassd 9825 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( B  x.  ( A ^ 2 ) )  / ; 1 6 )  =  ( B  x.  (
( A ^ 2 )  / ; 1 6 ) ) )
1933, 59mulcomd 9109 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( B  x.  ( A ^ 2 ) )  =  ( ( A ^ 2 )  x.  B ) )
194193oveq1d 6096 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( B  x.  ( A ^ 2 ) )  / ; 1 6 )  =  ( ( ( A ^ 2 )  x.  B )  / ; 1 6 ) )
195191, 192, 1943eqtr2d 2474 . . . . . . . . . . . . 13  |-  ( ph  ->  ( B  x.  (
( A  /  4
) ^ 2 ) )  =  ( ( ( A ^ 2 )  x.  B )  / ; 1 6 ) )
196181a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( 3  /  8
)  e.  CC )
197196, 59, 59mulassd 9111 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( ( 3  /  8 )  x.  ( A ^ 2 ) )  x.  ( A ^ 2 ) )  =  ( ( 3  /  8 )  x.  ( ( A ^
2 )  x.  ( A ^ 2 ) ) ) )
198104, 64, 12, 14div23d 9827 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( 3  x.  ( A ^ 4 ) )  /  8
)  =  ( ( 3  /  8 )  x.  ( A ^
4 ) ) )
199 2p2e4 10098 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 2  +  2 )  =  4
200199oveq2i 6092 . . . . . . . . . . . . . . . . . . . 20  |-  ( A ^ ( 2  +  2 ) )  =  ( A ^ 4 )
20182a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  2  e.  NN0 )
2022, 201, 201expaddd 11525 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( A ^ (
2  +  2 ) )  =  ( ( A ^ 2 )  x.  ( A ^
2 ) ) )
203200, 202syl5eqr 2482 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( A ^ 4 )  =  ( ( A ^ 2 )  x.  ( A ^
2 ) ) )
204203oveq2d 6097 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( 3  / 
8 )  x.  ( A ^ 4 ) )  =  ( ( 3  /  8 )  x.  ( ( A ^
2 )  x.  ( A ^ 2 ) ) ) )
205198, 204eqtrd 2468 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 3  x.  ( A ^ 4 ) )  /  8
)  =  ( ( 3  /  8 )  x.  ( ( A ^ 2 )  x.  ( A ^ 2 ) ) ) )
206104, 64, 12, 14divassd 9825 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 3  x.  ( A ^ 4 ) )  /  8
)  =  ( 3  x.  ( ( A ^ 4 )  / 
8 ) ) )
207197, 205, 2063eqtr2d 2474 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( 3  /  8 )  x.  ( A ^ 2 ) )  x.  ( A ^ 2 ) )  =  ( 3  x.  ( ( A ^
4 )  /  8
) ) )
208207oveq1d 6096 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( ( 3  /  8 )  x.  ( A ^
2 ) )  x.  ( A ^ 2 ) )  /  (
4 ^ 2 ) )  =  ( ( 3  x.  ( ( A ^ 4 )  /  8 ) )  /  ( 4 ^ 2 ) ) )
209188, 77syl5eqel 2520 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 4 ^ 2 )  e.  CC )
210188, 78eqnetri 2618 . . . . . . . . . . . . . . . . 17  |-  ( 4 ^ 2 )  =/=  0
211210a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 4 ^ 2 )  =/=  0 )
212183, 59, 209, 211divassd 9825 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( ( 3  /  8 )  x.  ( A ^
2 ) )  x.  ( A ^ 2 ) )  /  (
4 ^ 2 ) )  =  ( ( ( 3  /  8
)  x.  ( A ^ 2 ) )  x.  ( ( A ^ 2 )  / 
( 4 ^ 2 ) ) ) )
213104, 65, 209, 211divassd 9825 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 3  x.  ( ( A ^
4 )  /  8
) )  /  (
4 ^ 2 ) )  =  ( 3  x.  ( ( ( A ^ 4 )  /  8 )  / 
( 4 ^ 2 ) ) ) )
214208, 212, 2133eqtr3d 2476 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( 3  /  8 )  x.  ( A ^ 2 ) )  x.  (
( A ^ 2 )  /  ( 4 ^ 2 ) ) )  =  ( 3  x.  ( ( ( A ^ 4 )  /  8 )  / 
( 4 ^ 2 ) ) ) )
215186oveq2d 6097 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( 3  /  8 )  x.  ( A ^ 2 ) )  x.  (
( A  /  4
) ^ 2 ) )  =  ( ( ( 3  /  8
)  x.  ( A ^ 2 ) )  x.  ( ( A ^ 2 )  / 
( 4 ^ 2 ) ) ) )
216188oveq2i 6092 . . . . . . . . . . . . . . . 16  |-  ( ( ( A ^ 4 )  /  8 )  /  ( 4 ^ 2 ) )  =  ( ( ( A ^ 4 )  / 
8 )  / ; 1 6 )
217130, 216syl6eqr 2486 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( ( A ^ 4 )  /  8 )  / 
4 )  /  4
)  =  ( ( ( A ^ 4 )  /  8 )  /  ( 4 ^ 2 ) ) )
218217oveq2d 6097 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 3  x.  (
( ( ( A ^ 4 )  / 
8 )  /  4
)  /  4 ) )  =  ( 3  x.  ( ( ( A ^ 4 )  /  8 )  / 
( 4 ^ 2 ) ) ) )
219214, 215, 2183eqtr4d 2478 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( 3  /  8 )  x.  ( A ^ 2 ) )  x.  (
( A  /  4
) ^ 2 ) )  =  ( 3  x.  ( ( ( ( A ^ 4 )  /  8 )  /  4 )  / 
4 ) ) )
220195, 219oveq12d 6099 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( B  x.  ( ( A  / 
4 ) ^ 2 ) )  -  (
( ( 3  / 
8 )  x.  ( A ^ 2 ) )  x.  ( ( A  /  4 ) ^
2 ) ) )  =  ( ( ( ( A ^ 2 )  x.  B )  / ; 1 6 )  -  ( 3  x.  (
( ( ( A ^ 4 )  / 
8 )  /  4
)  /  4 ) ) ) )
221180, 185, 2203eqtrd 2472 . . . . . . . . . . 11  |-  ( ph  ->  ( P  x.  (
( A  /  4
) ^ 2 ) )  =  ( ( ( ( A ^
2 )  x.  B
)  / ; 1 6 )  -  ( 3  x.  (
( ( ( A ^ 4 )  / 
8 )  /  4
)  /  4 ) ) ) )
222221oveq2d 6097 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( A ^ 4 )  / ;; 2 5 6 )  +  ( P  x.  ( ( A  / 
4 ) ^ 2 ) ) )  =  ( ( ( A ^ 4 )  / ;; 2 5 6 )  +  ( ( ( ( A ^ 2 )  x.  B )  / ; 1 6 )  -  ( 3  x.  (
( ( ( A ^ 4 )  / 
8 )  /  4
)  /  4 ) ) ) ) )
223167, 178, 2223eqtr4d 2478 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( ( A ^ 2 )  x.  B )  /  8 )  -  ( ( ( A ^ 2 )  x.  B )  / ; 1 6 ) )  +  ( ( ( 3  / ;; 2 5 6 )  x.  ( A ^ 4 ) )  -  (
( ( A ^
4 )  /  8
)  /  4 ) ) )  =  ( ( ( A ^
4 )  / ;; 2 5 6 )  +  ( P  x.  (
( A  /  4
) ^ 2 ) ) ) )
224102, 103, 2233eqtrd 2472 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( ( A ^ 2 )  x.  B )  /  8 )  +  ( ( 3  / ;; 2 5 6 )  x.  ( A ^
4 ) ) )  -  ( ( ( ( A ^ 4 )  /  8 )  /  4 )  +  ( ( ( A ^ 2 )  x.  B )  / ; 1 6 ) ) )  =  ( ( ( A ^ 4 )  / ;; 2 5 6 )  +  ( P  x.  (
( A  /  4
) ^ 2 ) ) ) )
225224negeqd 9300 . . . . . . 7  |-  ( ph  -> 
-u ( ( ( ( ( A ^
2 )  x.  B
)  /  8 )  +  ( ( 3  / ;; 2 5 6 )  x.  ( A ^ 4 ) ) )  -  ( ( ( ( A ^
4 )  /  8
)  /  4 )  +  ( ( ( A ^ 2 )  x.  B )  / ; 1 6 ) ) )  = 
-u ( ( ( A ^ 4 )  / ;; 2 5 6 )  +  ( P  x.  ( ( A  /  4 ) ^ 2 ) ) ) )
22666, 80, 61, 90addsub4d 9458 . . . . . . 7  |-  ( ph  ->  ( ( ( ( ( A ^ 4 )  /  8 )  /  4 )  +  ( ( ( A ^ 2 )  x.  B )  / ; 1 6 ) )  -  ( ( ( ( A ^ 2 )  x.  B )  /  8 )  +  ( ( 3  / ;; 2 5 6 )  x.  ( A ^
4 ) ) ) )  =  ( ( ( ( ( A ^ 4 )  / 
8 )  /  4
)  -  ( ( ( A ^ 2 )  x.  B )  /  8 ) )  +  ( ( ( ( A ^ 2 )  x.  B )  / ; 1 6 )  -  ( ( 3  / ;; 2 5 6 )  x.  ( A ^
4 ) ) ) ) )
227100, 225, 2263eqtr3rd 2477 . . . . . 6  |-  ( ph  ->  ( ( ( ( ( A ^ 4 )  /  8 )  /  4 )  -  ( ( ( A ^ 2 )  x.  B )  /  8
) )  +  ( ( ( ( A ^ 2 )  x.  B )  / ; 1 6 )  -  ( ( 3  / ;; 2 5 6 )  x.  ( A ^
4 ) ) ) )  =  -u (
( ( A ^
4 )  / ;; 2 5 6 )  +  ( P  x.  (
( A  /  4
) ^ 2 ) ) ) )
228227oveq2d 6097 . . . . 5  |-  ( ph  ->  ( D  +  ( ( ( ( ( A ^ 4 )  /  8 )  / 
4 )  -  (
( ( A ^
2 )  x.  B
)  /  8 ) )  +  ( ( ( ( A ^
2 )  x.  B
)  / ; 1 6 )  -  ( ( 3  / ;; 2 5 6 )  x.  ( A ^
4 ) ) ) ) )  =  ( D  +  -u (
( ( A ^
4 )  / ;; 2 5 6 )  +  ( P  x.  (
( A  /  4
) ^ 2 ) ) ) ) )
2293, 183subcld 9411 . . . . . . . . 9  |-  ( ph  ->  ( B  -  (
( 3  /  8
)  x.  ( A ^ 2 ) ) )  e.  CC )
230179, 229eqeltrd 2510 . . . . . . . 8  |-  ( ph  ->  P  e.  CC )
231230, 184mulcld 9108 . . . . . . 7  |-  ( ph  ->  ( P  x.  (
( A  /  4
) ^ 2 ) )  e.  CC )
232114, 231addcld 9107 . . . . . 6  |-  ( ph  ->  ( ( ( A ^ 4 )  / ;; 2 5 6 )  +  ( P  x.  ( ( A  / 
4 ) ^ 2 ) ) )  e.  CC )
23372, 232negsubd 9417 . . . . 5  |-  ( ph  ->  ( D  +  -u ( ( ( A ^ 4 )  / ;; 2 5 6 )  +  ( P  x.  ( ( A  / 
4 ) ^ 2 ) ) ) )  =  ( D  -  ( ( ( A ^ 4 )  / ;; 2 5 6 )  +  ( P  x.  ( ( A  / 
4 ) ^ 2 ) ) ) ) )
23497, 228, 2333eqtrd 2472 . . . 4  |-  ( ph  ->  ( ( ( ( ( A ^ 4 )  /  8 )  /  4 )  -  ( ( ( A ^ 2 )  x.  B )  /  8
) )  +  ( D  +  ( ( ( ( A ^
2 )  x.  B
)  / ; 1 6 )  -  ( ( 3  / ;; 2 5 6 )  x.  ( A ^
4 ) ) ) ) )  =  ( D  -  ( ( ( A ^ 4 )  / ;; 2 5 6 )  +  ( P  x.  (
( A  /  4
) ^ 2 ) ) ) ) )
23594, 96, 2343eqtrd 2472 . . 3  |-  ( ph  ->  ( ( Q  x.  ( A  /  4
) )  +  R
)  =  ( D  -  ( ( ( A ^ 4 )  / ;; 2 5 6 )  +  ( P  x.  ( ( A  /  4 ) ^ 2 ) ) ) ) )
236235oveq2d 6097 . 2  |-  ( ph  ->  ( ( ( ( A ^ 4 )  / ;; 2 5 6 )  +  ( P  x.  ( ( A  /  4 ) ^ 2 ) ) )  +  ( ( Q  x.  ( A  /  4 ) )  +  R ) )  =  ( ( ( ( A ^ 4 )  / ;; 2 5 6 )  +  ( P  x.  (
( A  /  4
) ^ 2 ) ) )  +  ( D  -  ( ( ( A ^ 4 )  / ;; 2 5 6 )  +  ( P  x.  (
( A  /  4
) ^ 2 ) ) ) ) ) )
237232, 72pncan3d 9414 . 2  |-  ( ph  ->  ( ( ( ( A ^ 4 )  / ;; 2 5 6 )  +  ( P  x.  ( ( A  /  4 ) ^ 2 ) ) )  +  ( D  -  ( ( ( A ^ 4 )  / ;; 2 5 6 )  +  ( P  x.  ( ( A  /  4 ) ^ 2 ) ) ) ) )  =  D )
238236, 237eqtr2d 2469 1  |-  ( ph  ->  D  =  ( ( ( ( A ^
4 )  / ;; 2 5 6 )  +  ( P  x.  (
( A  /  4
) ^ 2 ) ) )  +  ( ( Q  x.  ( A  /  4 ) )  +  R ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1652    e. wcel 1725    =/= wne 2599  (class class class)co 6081   CCcc 8988   0cc0 8990   1c1 8991    + caddc 8993    x. cmul 8995    - cmin 9291   -ucneg 9292    / cdiv 9677   2c2 10049   3c3 10050   4c4 10051   5c5 10052   6c6 10053   8c8 10055   NN0cn0 10221  ;cdc 10382   ^cexp 11382
This theorem is referenced by:  quart1  20696
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-seq 11324  df-exp 11383
  Copyright terms: Public domain W3C validator