MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quartlem1 Unicode version

Theorem quartlem1 20169
Description: Lemma for quart 20173. (Contributed by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
quartlem1.p  |-  ( ph  ->  P  e.  CC )
quartlem1.q  |-  ( ph  ->  Q  e.  CC )
quartlem1.r  |-  ( ph  ->  R  e.  CC )
quartlem1.u  |-  ( ph  ->  U  =  ( ( P ^ 2 )  +  (; 1 2  x.  R
) ) )
quartlem1.v  |-  ( ph  ->  V  =  ( (
-u ( 2  x.  ( P ^ 3 ) )  -  (; 2 7  x.  ( Q ^
2 ) ) )  +  (; 7 2  x.  ( P  x.  R )
) ) )
Assertion
Ref Expression
quartlem1  |-  ( ph  ->  ( U  =  ( ( ( 2  x.  P ) ^ 2 )  -  ( 3  x.  ( ( P ^ 2 )  -  ( 4  x.  R
) ) ) )  /\  V  =  ( ( ( 2  x.  ( ( 2  x.  P ) ^ 3 ) )  -  (
9  x.  ( ( 2  x.  P )  x.  ( ( P ^ 2 )  -  ( 4  x.  R
) ) ) ) )  +  (; 2 7  x.  -u ( Q ^ 2 ) ) ) ) )

Proof of Theorem quartlem1
StepHypRef Expression
1 2cn 9832 . . . . . . . . . 10  |-  2  e.  CC
2 quartlem1.p . . . . . . . . . 10  |-  ( ph  ->  P  e.  CC )
3 sqmul 11183 . . . . . . . . . 10  |-  ( ( 2  e.  CC  /\  P  e.  CC )  ->  ( ( 2  x.  P ) ^ 2 )  =  ( ( 2 ^ 2 )  x.  ( P ^
2 ) ) )
41, 2, 3sylancr 644 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  P ) ^ 2 )  =  ( ( 2 ^ 2 )  x.  ( P ^
2 ) ) )
5 sq2 11215 . . . . . . . . . 10  |-  ( 2 ^ 2 )  =  4
65oveq1i 5884 . . . . . . . . 9  |-  ( ( 2 ^ 2 )  x.  ( P ^
2 ) )  =  ( 4  x.  ( P ^ 2 ) )
74, 6syl6eq 2344 . . . . . . . 8  |-  ( ph  ->  ( ( 2  x.  P ) ^ 2 )  =  ( 4  x.  ( P ^
2 ) ) )
87oveq1d 5889 . . . . . . 7  |-  ( ph  ->  ( ( ( 2  x.  P ) ^
2 )  -  (
3  x.  ( P ^ 2 ) ) )  =  ( ( 4  x.  ( P ^ 2 ) )  -  ( 3  x.  ( P ^ 2 ) ) ) )
9 4cn 9836 . . . . . . . . 9  |-  4  e.  CC
109a1i 10 . . . . . . . 8  |-  ( ph  ->  4  e.  CC )
11 3cn 9834 . . . . . . . . 9  |-  3  e.  CC
1211a1i 10 . . . . . . . 8  |-  ( ph  ->  3  e.  CC )
132sqcld 11259 . . . . . . . 8  |-  ( ph  ->  ( P ^ 2 )  e.  CC )
1410, 12, 13subdird 9252 . . . . . . 7  |-  ( ph  ->  ( ( 4  -  3 )  x.  ( P ^ 2 ) )  =  ( ( 4  x.  ( P ^
2 ) )  -  ( 3  x.  ( P ^ 2 ) ) ) )
158, 14eqtr4d 2331 . . . . . 6  |-  ( ph  ->  ( ( ( 2  x.  P ) ^
2 )  -  (
3  x.  ( P ^ 2 ) ) )  =  ( ( 4  -  3 )  x.  ( P ^
2 ) ) )
16 ax-1cn 8811 . . . . . . . . . 10  |-  1  e.  CC
17 3p1e4 9864 . . . . . . . . . 10  |-  ( 3  +  1 )  =  4
189, 11, 16, 17subaddrii 9151 . . . . . . . . 9  |-  ( 4  -  3 )  =  1
1918oveq1i 5884 . . . . . . . 8  |-  ( ( 4  -  3 )  x.  ( P ^
2 ) )  =  ( 1  x.  ( P ^ 2 ) )
20 mulid2 8852 . . . . . . . 8  |-  ( ( P ^ 2 )  e.  CC  ->  (
1  x.  ( P ^ 2 ) )  =  ( P ^
2 ) )
2119, 20syl5eq 2340 . . . . . . 7  |-  ( ( P ^ 2 )  e.  CC  ->  (
( 4  -  3 )  x.  ( P ^ 2 ) )  =  ( P ^
2 ) )
2213, 21syl 15 . . . . . 6  |-  ( ph  ->  ( ( 4  -  3 )  x.  ( P ^ 2 ) )  =  ( P ^
2 ) )
2315, 22eqtr2d 2329 . . . . 5  |-  ( ph  ->  ( P ^ 2 )  =  ( ( ( 2  x.  P
) ^ 2 )  -  ( 3  x.  ( P ^ 2 ) ) ) )
2423oveq1d 5889 . . . 4  |-  ( ph  ->  ( ( P ^
2 )  +  (; 1
2  x.  R ) )  =  ( ( ( ( 2  x.  P ) ^ 2 )  -  ( 3  x.  ( P ^
2 ) ) )  +  (; 1 2  x.  R
) ) )
25 mulcl 8837 . . . . . . 7  |-  ( ( 2  e.  CC  /\  P  e.  CC )  ->  ( 2  x.  P
)  e.  CC )
261, 2, 25sylancr 644 . . . . . 6  |-  ( ph  ->  ( 2  x.  P
)  e.  CC )
2726sqcld 11259 . . . . 5  |-  ( ph  ->  ( ( 2  x.  P ) ^ 2 )  e.  CC )
28 mulcl 8837 . . . . . 6  |-  ( ( 3  e.  CC  /\  ( P ^ 2 )  e.  CC )  -> 
( 3  x.  ( P ^ 2 ) )  e.  CC )
2911, 13, 28sylancr 644 . . . . 5  |-  ( ph  ->  ( 3  x.  ( P ^ 2 ) )  e.  CC )
30 1nn0 9997 . . . . . . . 8  |-  1  e.  NN0
31 2nn 9893 . . . . . . . 8  |-  2  e.  NN
3230, 31decnncl 10153 . . . . . . 7  |- ; 1 2  e.  NN
3332nncni 9772 . . . . . 6  |- ; 1 2  e.  CC
34 quartlem1.r . . . . . 6  |-  ( ph  ->  R  e.  CC )
35 mulcl 8837 . . . . . 6  |-  ( (; 1
2  e.  CC  /\  R  e.  CC )  ->  (; 1 2  x.  R
)  e.  CC )
3633, 34, 35sylancr 644 . . . . 5  |-  ( ph  ->  (; 1 2  x.  R
)  e.  CC )
3727, 29, 36subsubd 9201 . . . 4  |-  ( ph  ->  ( ( ( 2  x.  P ) ^
2 )  -  (
( 3  x.  ( P ^ 2 ) )  -  (; 1 2  x.  R
) ) )  =  ( ( ( ( 2  x.  P ) ^ 2 )  -  ( 3  x.  ( P ^ 2 ) ) )  +  (; 1 2  x.  R
) ) )
3824, 37eqtr4d 2331 . . 3  |-  ( ph  ->  ( ( P ^
2 )  +  (; 1
2  x.  R ) )  =  ( ( ( 2  x.  P
) ^ 2 )  -  ( ( 3  x.  ( P ^
2 ) )  -  (; 1 2  x.  R ) ) ) )
39 quartlem1.u . . 3  |-  ( ph  ->  U  =  ( ( P ^ 2 )  +  (; 1 2  x.  R
) ) )
40 mulcl 8837 . . . . . . 7  |-  ( ( 4  e.  CC  /\  R  e.  CC )  ->  ( 4  x.  R
)  e.  CC )
419, 34, 40sylancr 644 . . . . . 6  |-  ( ph  ->  ( 4  x.  R
)  e.  CC )
4212, 13, 41subdid 9251 . . . . 5  |-  ( ph  ->  ( 3  x.  (
( P ^ 2 )  -  ( 4  x.  R ) ) )  =  ( ( 3  x.  ( P ^ 2 ) )  -  ( 3  x.  ( 4  x.  R
) ) ) )
43 4t3e12 10212 . . . . . . . . 9  |-  ( 4  x.  3 )  = ; 1
2
449, 11, 43mulcomli 8860 . . . . . . . 8  |-  ( 3  x.  4 )  = ; 1
2
4544oveq1i 5884 . . . . . . 7  |-  ( ( 3  x.  4 )  x.  R )  =  (; 1 2  x.  R
)
4612, 10, 34mulassd 8874 . . . . . . 7  |-  ( ph  ->  ( ( 3  x.  4 )  x.  R
)  =  ( 3  x.  ( 4  x.  R ) ) )
4745, 46syl5eqr 2342 . . . . . 6  |-  ( ph  ->  (; 1 2  x.  R
)  =  ( 3  x.  ( 4  x.  R ) ) )
4847oveq2d 5890 . . . . 5  |-  ( ph  ->  ( ( 3  x.  ( P ^ 2 ) )  -  (; 1 2  x.  R ) )  =  ( ( 3  x.  ( P ^
2 ) )  -  ( 3  x.  (
4  x.  R ) ) ) )
4942, 48eqtr4d 2331 . . . 4  |-  ( ph  ->  ( 3  x.  (
( P ^ 2 )  -  ( 4  x.  R ) ) )  =  ( ( 3  x.  ( P ^ 2 ) )  -  (; 1 2  x.  R
) ) )
5049oveq2d 5890 . . 3  |-  ( ph  ->  ( ( ( 2  x.  P ) ^
2 )  -  (
3  x.  ( ( P ^ 2 )  -  ( 4  x.  R ) ) ) )  =  ( ( ( 2  x.  P
) ^ 2 )  -  ( ( 3  x.  ( P ^
2 ) )  -  (; 1 2  x.  R ) ) ) )
5138, 39, 503eqtr4d 2338 . 2  |-  ( ph  ->  U  =  ( ( ( 2  x.  P
) ^ 2 )  -  ( 3  x.  ( ( P ^
2 )  -  (
4  x.  R ) ) ) ) )
521a1i 10 . . . . . . . . . 10  |-  ( ph  ->  2  e.  CC )
53 3nn0 9999 . . . . . . . . . . 11  |-  3  e.  NN0
5453a1i 10 . . . . . . . . . 10  |-  ( ph  ->  3  e.  NN0 )
5552, 2, 54mulexpd 11276 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  P ) ^ 3 )  =  ( ( 2 ^ 3 )  x.  ( P ^
3 ) ) )
56 cu2 11217 . . . . . . . . . 10  |-  ( 2 ^ 3 )  =  8
5756oveq1i 5884 . . . . . . . . 9  |-  ( ( 2 ^ 3 )  x.  ( P ^
3 ) )  =  ( 8  x.  ( P ^ 3 ) )
5855, 57syl6eq 2344 . . . . . . . 8  |-  ( ph  ->  ( ( 2  x.  P ) ^ 3 )  =  ( 8  x.  ( P ^
3 ) ) )
5958oveq2d 5890 . . . . . . 7  |-  ( ph  ->  ( 2  x.  (
( 2  x.  P
) ^ 3 ) )  =  ( 2  x.  ( 8  x.  ( P ^ 3 ) ) ) )
60 8nn 9899 . . . . . . . . . 10  |-  8  e.  NN
6160nncni 9772 . . . . . . . . 9  |-  8  e.  CC
6261a1i 10 . . . . . . . 8  |-  ( ph  ->  8  e.  CC )
63 expcl 11137 . . . . . . . . 9  |-  ( ( P  e.  CC  /\  3  e.  NN0 )  -> 
( P ^ 3 )  e.  CC )
642, 53, 63sylancl 643 . . . . . . . 8  |-  ( ph  ->  ( P ^ 3 )  e.  CC )
6552, 62, 64mul12d 9037 . . . . . . 7  |-  ( ph  ->  ( 2  x.  (
8  x.  ( P ^ 3 ) ) )  =  ( 8  x.  ( 2  x.  ( P ^ 3 ) ) ) )
6659, 65eqtrd 2328 . . . . . 6  |-  ( ph  ->  ( 2  x.  (
( 2  x.  P
) ^ 3 ) )  =  ( 8  x.  ( 2  x.  ( P ^ 3 ) ) ) )
67 9nn 9900 . . . . . . . . . 10  |-  9  e.  NN
6867nncni 9772 . . . . . . . . 9  |-  9  e.  CC
6968a1i 10 . . . . . . . 8  |-  ( ph  ->  9  e.  CC )
70 mulcl 8837 . . . . . . . . 9  |-  ( ( 2  e.  CC  /\  ( P ^ 3 )  e.  CC )  -> 
( 2  x.  ( P ^ 3 ) )  e.  CC )
711, 64, 70sylancr 644 . . . . . . . 8  |-  ( ph  ->  ( 2  x.  ( P ^ 3 ) )  e.  CC )
722, 34mulcld 8871 . . . . . . . . 9  |-  ( ph  ->  ( P  x.  R
)  e.  CC )
73 mulcl 8837 . . . . . . . . 9  |-  ( ( 8  e.  CC  /\  ( P  x.  R
)  e.  CC )  ->  ( 8  x.  ( P  x.  R
) )  e.  CC )
7461, 72, 73sylancr 644 . . . . . . . 8  |-  ( ph  ->  ( 8  x.  ( P  x.  R )
)  e.  CC )
7569, 71, 74subdid 9251 . . . . . . 7  |-  ( ph  ->  ( 9  x.  (
( 2  x.  ( P ^ 3 ) )  -  ( 8  x.  ( P  x.  R
) ) ) )  =  ( ( 9  x.  ( 2  x.  ( P ^ 3 ) ) )  -  ( 9  x.  (
8  x.  ( P  x.  R ) ) ) ) )
7626, 13, 41subdid 9251 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  P )  x.  (
( P ^ 2 )  -  ( 4  x.  R ) ) )  =  ( ( ( 2  x.  P
)  x.  ( P ^ 2 ) )  -  ( ( 2  x.  P )  x.  ( 4  x.  R
) ) ) )
7752, 2, 13mulassd 8874 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 2  x.  P )  x.  ( P ^ 2 ) )  =  ( 2  x.  ( P  x.  ( P ^ 2 ) ) ) )
782, 13mulcomd 8872 . . . . . . . . . . . . 13  |-  ( ph  ->  ( P  x.  ( P ^ 2 ) )  =  ( ( P ^ 2 )  x.  P ) )
79 df-3 9821 . . . . . . . . . . . . . . 15  |-  3  =  ( 2  +  1 )
8079oveq2i 5885 . . . . . . . . . . . . . 14  |-  ( P ^ 3 )  =  ( P ^ (
2  +  1 ) )
81 2nn0 9998 . . . . . . . . . . . . . . 15  |-  2  e.  NN0
82 expp1 11126 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  CC  /\  2  e.  NN0 )  -> 
( P ^ (
2  +  1 ) )  =  ( ( P ^ 2 )  x.  P ) )
832, 81, 82sylancl 643 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( P ^ (
2  +  1 ) )  =  ( ( P ^ 2 )  x.  P ) )
8480, 83syl5eq 2340 . . . . . . . . . . . . 13  |-  ( ph  ->  ( P ^ 3 )  =  ( ( P ^ 2 )  x.  P ) )
8578, 84eqtr4d 2331 . . . . . . . . . . . 12  |-  ( ph  ->  ( P  x.  ( P ^ 2 ) )  =  ( P ^
3 ) )
8685oveq2d 5890 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  x.  ( P  x.  ( P ^ 2 ) ) )  =  ( 2  x.  ( P ^
3 ) ) )
8777, 86eqtrd 2328 . . . . . . . . . 10  |-  ( ph  ->  ( ( 2  x.  P )  x.  ( P ^ 2 ) )  =  ( 2  x.  ( P ^ 3 ) ) )
8852, 2, 10, 34mul4d 9040 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 2  x.  P )  x.  (
4  x.  R ) )  =  ( ( 2  x.  4 )  x.  ( P  x.  R ) ) )
89 4t2e8 9890 . . . . . . . . . . . . 13  |-  ( 4  x.  2 )  =  8
909, 1, 89mulcomli 8860 . . . . . . . . . . . 12  |-  ( 2  x.  4 )  =  8
9190oveq1i 5884 . . . . . . . . . . 11  |-  ( ( 2  x.  4 )  x.  ( P  x.  R ) )  =  ( 8  x.  ( P  x.  R )
)
9288, 91syl6eq 2344 . . . . . . . . . 10  |-  ( ph  ->  ( ( 2  x.  P )  x.  (
4  x.  R ) )  =  ( 8  x.  ( P  x.  R ) ) )
9387, 92oveq12d 5892 . . . . . . . . 9  |-  ( ph  ->  ( ( ( 2  x.  P )  x.  ( P ^ 2 ) )  -  (
( 2  x.  P
)  x.  ( 4  x.  R ) ) )  =  ( ( 2  x.  ( P ^ 3 ) )  -  ( 8  x.  ( P  x.  R
) ) ) )
9476, 93eqtrd 2328 . . . . . . . 8  |-  ( ph  ->  ( ( 2  x.  P )  x.  (
( P ^ 2 )  -  ( 4  x.  R ) ) )  =  ( ( 2  x.  ( P ^ 3 ) )  -  ( 8  x.  ( P  x.  R
) ) ) )
9594oveq2d 5890 . . . . . . 7  |-  ( ph  ->  ( 9  x.  (
( 2  x.  P
)  x.  ( ( P ^ 2 )  -  ( 4  x.  R ) ) ) )  =  ( 9  x.  ( ( 2  x.  ( P ^
3 ) )  -  ( 8  x.  ( P  x.  R )
) ) ) )
96 9t8e72 10241 . . . . . . . . . 10  |-  ( 9  x.  8 )  = ; 7
2
9796oveq1i 5884 . . . . . . . . 9  |-  ( ( 9  x.  8 )  x.  ( P  x.  R ) )  =  (; 7 2  x.  ( P  x.  R )
)
9869, 62, 72mulassd 8874 . . . . . . . . 9  |-  ( ph  ->  ( ( 9  x.  8 )  x.  ( P  x.  R )
)  =  ( 9  x.  ( 8  x.  ( P  x.  R
) ) ) )
9997, 98syl5eqr 2342 . . . . . . . 8  |-  ( ph  ->  (; 7 2  x.  ( P  x.  R )
)  =  ( 9  x.  ( 8  x.  ( P  x.  R
) ) ) )
10099oveq2d 5890 . . . . . . 7  |-  ( ph  ->  ( ( 9  x.  ( 2  x.  ( P ^ 3 ) ) )  -  (; 7 2  x.  ( P  x.  R )
) )  =  ( ( 9  x.  (
2  x.  ( P ^ 3 ) ) )  -  ( 9  x.  ( 8  x.  ( P  x.  R
) ) ) ) )
10175, 95, 1003eqtr4d 2338 . . . . . 6  |-  ( ph  ->  ( 9  x.  (
( 2  x.  P
)  x.  ( ( P ^ 2 )  -  ( 4  x.  R ) ) ) )  =  ( ( 9  x.  ( 2  x.  ( P ^
3 ) ) )  -  (; 7 2  x.  ( P  x.  R )
) ) )
10266, 101oveq12d 5892 . . . . 5  |-  ( ph  ->  ( ( 2  x.  ( ( 2  x.  P ) ^ 3 ) )  -  (
9  x.  ( ( 2  x.  P )  x.  ( ( P ^ 2 )  -  ( 4  x.  R
) ) ) ) )  =  ( ( 8  x.  ( 2  x.  ( P ^
3 ) ) )  -  ( ( 9  x.  ( 2  x.  ( P ^ 3 ) ) )  -  (; 7 2  x.  ( P  x.  R ) ) ) ) )
103 mulcl 8837 . . . . . . 7  |-  ( ( 8  e.  CC  /\  ( 2  x.  ( P ^ 3 ) )  e.  CC )  -> 
( 8  x.  (
2  x.  ( P ^ 3 ) ) )  e.  CC )
10461, 71, 103sylancr 644 . . . . . 6  |-  ( ph  ->  ( 8  x.  (
2  x.  ( P ^ 3 ) ) )  e.  CC )
105 mulcl 8837 . . . . . . 7  |-  ( ( 9  e.  CC  /\  ( 2  x.  ( P ^ 3 ) )  e.  CC )  -> 
( 9  x.  (
2  x.  ( P ^ 3 ) ) )  e.  CC )
10668, 71, 105sylancr 644 . . . . . 6  |-  ( ph  ->  ( 9  x.  (
2  x.  ( P ^ 3 ) ) )  e.  CC )
107 7nn0 10003 . . . . . . . . 9  |-  7  e.  NN0
108107, 31decnncl 10153 . . . . . . . 8  |- ; 7 2  e.  NN
109108nncni 9772 . . . . . . 7  |- ; 7 2  e.  CC
110 mulcl 8837 . . . . . . 7  |-  ( (; 7
2  e.  CC  /\  ( P  x.  R
)  e.  CC )  ->  (; 7 2  x.  ( P  x.  R )
)  e.  CC )
111109, 72, 110sylancr 644 . . . . . 6  |-  ( ph  ->  (; 7 2  x.  ( P  x.  R )
)  e.  CC )
112104, 106, 111subsubd 9201 . . . . 5  |-  ( ph  ->  ( ( 8  x.  ( 2  x.  ( P ^ 3 ) ) )  -  ( ( 9  x.  ( 2  x.  ( P ^
3 ) ) )  -  (; 7 2  x.  ( P  x.  R )
) ) )  =  ( ( ( 8  x.  ( 2  x.  ( P ^ 3 ) ) )  -  ( 9  x.  (
2  x.  ( P ^ 3 ) ) ) )  +  (; 7
2  x.  ( P  x.  R ) ) ) )
113106, 104negsubdi2d 9189 . . . . . . 7  |-  ( ph  -> 
-u ( ( 9  x.  ( 2  x.  ( P ^ 3 ) ) )  -  ( 8  x.  (
2  x.  ( P ^ 3 ) ) ) )  =  ( ( 8  x.  (
2  x.  ( P ^ 3 ) ) )  -  ( 9  x.  ( 2  x.  ( P ^ 3 ) ) ) ) )
11469, 62, 71subdird 9252 . . . . . . . . 9  |-  ( ph  ->  ( ( 9  -  8 )  x.  (
2  x.  ( P ^ 3 ) ) )  =  ( ( 9  x.  ( 2  x.  ( P ^
3 ) ) )  -  ( 8  x.  ( 2  x.  ( P ^ 3 ) ) ) ) )
115 8p1e9 9869 . . . . . . . . . . . 12  |-  ( 8  +  1 )  =  9
11668, 61, 16, 115subaddrii 9151 . . . . . . . . . . 11  |-  ( 9  -  8 )  =  1
117116oveq1i 5884 . . . . . . . . . 10  |-  ( ( 9  -  8 )  x.  ( 2  x.  ( P ^ 3 ) ) )  =  ( 1  x.  (
2  x.  ( P ^ 3 ) ) )
11871mulid2d 8869 . . . . . . . . . 10  |-  ( ph  ->  ( 1  x.  (
2  x.  ( P ^ 3 ) ) )  =  ( 2  x.  ( P ^
3 ) ) )
119117, 118syl5eq 2340 . . . . . . . . 9  |-  ( ph  ->  ( ( 9  -  8 )  x.  (
2  x.  ( P ^ 3 ) ) )  =  ( 2  x.  ( P ^
3 ) ) )
120114, 119eqtr3d 2330 . . . . . . . 8  |-  ( ph  ->  ( ( 9  x.  ( 2  x.  ( P ^ 3 ) ) )  -  ( 8  x.  ( 2  x.  ( P ^ 3 ) ) ) )  =  ( 2  x.  ( P ^ 3 ) ) )
121120negeqd 9062 . . . . . . 7  |-  ( ph  -> 
-u ( ( 9  x.  ( 2  x.  ( P ^ 3 ) ) )  -  ( 8  x.  (
2  x.  ( P ^ 3 ) ) ) )  =  -u ( 2  x.  ( P ^ 3 ) ) )
122113, 121eqtr3d 2330 . . . . . 6  |-  ( ph  ->  ( ( 8  x.  ( 2  x.  ( P ^ 3 ) ) )  -  ( 9  x.  ( 2  x.  ( P ^ 3 ) ) ) )  =  -u ( 2  x.  ( P ^ 3 ) ) )
123122oveq1d 5889 . . . . 5  |-  ( ph  ->  ( ( ( 8  x.  ( 2  x.  ( P ^ 3 ) ) )  -  ( 9  x.  (
2  x.  ( P ^ 3 ) ) ) )  +  (; 7
2  x.  ( P  x.  R ) ) )  =  ( -u ( 2  x.  ( P ^ 3 ) )  +  (; 7 2  x.  ( P  x.  R )
) ) )
124102, 112, 1233eqtrd 2332 . . . 4  |-  ( ph  ->  ( ( 2  x.  ( ( 2  x.  P ) ^ 3 ) )  -  (
9  x.  ( ( 2  x.  P )  x.  ( ( P ^ 2 )  -  ( 4  x.  R
) ) ) ) )  =  ( -u ( 2  x.  ( P ^ 3 ) )  +  (; 7 2  x.  ( P  x.  R )
) ) )
125 7nn 9898 . . . . . . 7  |-  7  e.  NN
12681, 125decnncl 10153 . . . . . 6  |- ; 2 7  e.  NN
127126nncni 9772 . . . . 5  |- ; 2 7  e.  CC
128 quartlem1.q . . . . . 6  |-  ( ph  ->  Q  e.  CC )
129128sqcld 11259 . . . . 5  |-  ( ph  ->  ( Q ^ 2 )  e.  CC )
130 mulneg2 9233 . . . . 5  |-  ( (; 2
7  e.  CC  /\  ( Q ^ 2 )  e.  CC )  -> 
(; 2 7  x.  -u ( Q ^ 2 ) )  =  -u (; 2 7  x.  ( Q ^ 2 ) ) )
131127, 129, 130sylancr 644 . . . 4  |-  ( ph  ->  (; 2 7  x.  -u ( Q ^ 2 ) )  =  -u (; 2 7  x.  ( Q ^ 2 ) ) )
132124, 131oveq12d 5892 . . 3  |-  ( ph  ->  ( ( ( 2  x.  ( ( 2  x.  P ) ^
3 ) )  -  ( 9  x.  (
( 2  x.  P
)  x.  ( ( P ^ 2 )  -  ( 4  x.  R ) ) ) ) )  +  (; 2
7  x.  -u ( Q ^ 2 ) ) )  =  ( (
-u ( 2  x.  ( P ^ 3 ) )  +  (; 7
2  x.  ( P  x.  R ) ) )  +  -u (; 2 7  x.  ( Q ^
2 ) ) ) )
13371negcld 9160 . . . . 5  |-  ( ph  -> 
-u ( 2  x.  ( P ^ 3 ) )  e.  CC )
134 mulcl 8837 . . . . . 6  |-  ( (; 2
7  e.  CC  /\  ( Q ^ 2 )  e.  CC )  -> 
(; 2 7  x.  ( Q ^ 2 ) )  e.  CC )
135127, 129, 134sylancr 644 . . . . 5  |-  ( ph  ->  (; 2 7  x.  ( Q ^ 2 ) )  e.  CC )
136133, 111, 135addsubd 9194 . . . 4  |-  ( ph  ->  ( ( -u (
2  x.  ( P ^ 3 ) )  +  (; 7 2  x.  ( P  x.  R )
) )  -  (; 2 7  x.  ( Q ^
2 ) ) )  =  ( ( -u ( 2  x.  ( P ^ 3 ) )  -  (; 2 7  x.  ( Q ^ 2 ) ) )  +  (; 7 2  x.  ( P  x.  R )
) ) )
137133, 111addcld 8870 . . . . 5  |-  ( ph  ->  ( -u ( 2  x.  ( P ^
3 ) )  +  (; 7 2  x.  ( P  x.  R )
) )  e.  CC )
138137, 135negsubd 9179 . . . 4  |-  ( ph  ->  ( ( -u (
2  x.  ( P ^ 3 ) )  +  (; 7 2  x.  ( P  x.  R )
) )  +  -u (; 2 7  x.  ( Q ^ 2 ) ) )  =  ( (
-u ( 2  x.  ( P ^ 3 ) )  +  (; 7
2  x.  ( P  x.  R ) ) )  -  (; 2 7  x.  ( Q ^ 2 ) ) ) )
139 quartlem1.v . . . 4  |-  ( ph  ->  V  =  ( (
-u ( 2  x.  ( P ^ 3 ) )  -  (; 2 7  x.  ( Q ^
2 ) ) )  +  (; 7 2  x.  ( P  x.  R )
) ) )
140136, 138, 1393eqtr4d 2338 . . 3  |-  ( ph  ->  ( ( -u (
2  x.  ( P ^ 3 ) )  +  (; 7 2  x.  ( P  x.  R )
) )  +  -u (; 2 7  x.  ( Q ^ 2 ) ) )  =  V )
141132, 140eqtr2d 2329 . 2  |-  ( ph  ->  V  =  ( ( ( 2  x.  (
( 2  x.  P
) ^ 3 ) )  -  ( 9  x.  ( ( 2  x.  P )  x.  ( ( P ^
2 )  -  (
4  x.  R ) ) ) ) )  +  (; 2 7  x.  -u ( Q ^ 2 ) ) ) )
14251, 141jca 518 1  |-  ( ph  ->  ( U  =  ( ( ( 2  x.  P ) ^ 2 )  -  ( 3  x.  ( ( P ^ 2 )  -  ( 4  x.  R
) ) ) )  /\  V  =  ( ( ( 2  x.  ( ( 2  x.  P ) ^ 3 ) )  -  (
9  x.  ( ( 2  x.  P )  x.  ( ( P ^ 2 )  -  ( 4  x.  R
) ) ) ) )  +  (; 2 7  x.  -u ( Q ^ 2 ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696  (class class class)co 5874   CCcc 8751   1c1 8754    + caddc 8756    x. cmul 8758    - cmin 9053   -ucneg 9054   2c2 9811   3c3 9812   4c4 9813   7c7 9816   8c8 9817   9c9 9818   NN0cn0 9981  ;cdc 10140   ^cexp 11120
This theorem is referenced by:  quart  20173
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-seq 11063  df-exp 11121
  Copyright terms: Public domain W3C validator