MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quartlem4 Unicode version

Theorem quartlem4 20156
Description: Closure lemmas for quart 20157. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
quart.a  |-  ( ph  ->  A  e.  CC )
quart.b  |-  ( ph  ->  B  e.  CC )
quart.c  |-  ( ph  ->  C  e.  CC )
quart.d  |-  ( ph  ->  D  e.  CC )
quart.x  |-  ( ph  ->  X  e.  CC )
quart.e  |-  ( ph  ->  E  =  -u ( A  /  4 ) )
quart.p  |-  ( ph  ->  P  =  ( B  -  ( ( 3  /  8 )  x.  ( A ^ 2 ) ) ) )
quart.q  |-  ( ph  ->  Q  =  ( ( C  -  ( ( A  x.  B )  /  2 ) )  +  ( ( A ^ 3 )  / 
8 ) ) )
quart.r  |-  ( ph  ->  R  =  ( ( D  -  ( ( C  x.  A )  /  4 ) )  +  ( ( ( ( A ^ 2 )  x.  B )  / ; 1 6 )  -  ( ( 3  / ;; 2 5 6 )  x.  ( A ^
4 ) ) ) ) )
quart.u  |-  ( ph  ->  U  =  ( ( P ^ 2 )  +  (; 1 2  x.  R
) ) )
quart.v  |-  ( ph  ->  V  =  ( (
-u ( 2  x.  ( P ^ 3 ) )  -  (; 2 7  x.  ( Q ^
2 ) ) )  +  (; 7 2  x.  ( P  x.  R )
) ) )
quart.w  |-  ( ph  ->  W  =  ( sqr `  ( ( V ^
2 )  -  (
4  x.  ( U ^ 3 ) ) ) ) )
quart.s  |-  ( ph  ->  S  =  ( ( sqr `  M )  /  2 ) )
quart.m  |-  ( ph  ->  M  =  -u (
( ( ( 2  x.  P )  +  T )  +  ( U  /  T ) )  /  3 ) )
quart.t  |-  ( ph  ->  T  =  ( ( ( V  +  W
)  /  2 )  ^ c  ( 1  /  3 ) ) )
quart.t0  |-  ( ph  ->  T  =/=  0 )
quart.m0  |-  ( ph  ->  M  =/=  0 )
quart.i  |-  ( ph  ->  I  =  ( sqr `  ( ( -u ( S ^ 2 )  -  ( P  /  2
) )  +  ( ( Q  /  4
)  /  S ) ) ) )
quart.j  |-  ( ph  ->  J  =  ( sqr `  ( ( -u ( S ^ 2 )  -  ( P  /  2
) )  -  (
( Q  /  4
)  /  S ) ) ) )
Assertion
Ref Expression
quartlem4  |-  ( ph  ->  ( S  =/=  0  /\  I  e.  CC  /\  J  e.  CC ) )

Proof of Theorem quartlem4
StepHypRef Expression
1 quart.s . . 3  |-  ( ph  ->  S  =  ( ( sqr `  M )  /  2 ) )
2 quart.a . . . . . . 7  |-  ( ph  ->  A  e.  CC )
3 quart.b . . . . . . 7  |-  ( ph  ->  B  e.  CC )
4 quart.c . . . . . . 7  |-  ( ph  ->  C  e.  CC )
5 quart.d . . . . . . 7  |-  ( ph  ->  D  e.  CC )
6 quart.e . . . . . . 7  |-  ( ph  ->  E  =  -u ( A  /  4 ) )
7 quart.p . . . . . . 7  |-  ( ph  ->  P  =  ( B  -  ( ( 3  /  8 )  x.  ( A ^ 2 ) ) ) )
8 quart.q . . . . . . 7  |-  ( ph  ->  Q  =  ( ( C  -  ( ( A  x.  B )  /  2 ) )  +  ( ( A ^ 3 )  / 
8 ) ) )
9 quart.r . . . . . . 7  |-  ( ph  ->  R  =  ( ( D  -  ( ( C  x.  A )  /  4 ) )  +  ( ( ( ( A ^ 2 )  x.  B )  / ; 1 6 )  -  ( ( 3  / ;; 2 5 6 )  x.  ( A ^
4 ) ) ) ) )
10 quart.u . . . . . . 7  |-  ( ph  ->  U  =  ( ( P ^ 2 )  +  (; 1 2  x.  R
) ) )
11 quart.v . . . . . . 7  |-  ( ph  ->  V  =  ( (
-u ( 2  x.  ( P ^ 3 ) )  -  (; 2 7  x.  ( Q ^
2 ) ) )  +  (; 7 2  x.  ( P  x.  R )
) ) )
12 quart.w . . . . . . 7  |-  ( ph  ->  W  =  ( sqr `  ( ( V ^
2 )  -  (
4  x.  ( U ^ 3 ) ) ) ) )
13 quart.m . . . . . . 7  |-  ( ph  ->  M  =  -u (
( ( ( 2  x.  P )  +  T )  +  ( U  /  T ) )  /  3 ) )
14 quart.t . . . . . . 7  |-  ( ph  ->  T  =  ( ( ( V  +  W
)  /  2 )  ^ c  ( 1  /  3 ) ) )
15 quart.t0 . . . . . . 7  |-  ( ph  ->  T  =/=  0 )
162, 3, 4, 5, 2, 6, 7, 8, 9, 10, 11, 12, 1, 13, 14, 15quartlem3 20155 . . . . . 6  |-  ( ph  ->  ( S  e.  CC  /\  M  e.  CC  /\  T  e.  CC )
)
1716simp2d 968 . . . . 5  |-  ( ph  ->  M  e.  CC )
1817sqrcld 11919 . . . 4  |-  ( ph  ->  ( sqr `  M
)  e.  CC )
19 2cn 9816 . . . . 5  |-  2  e.  CC
2019a1i 10 . . . 4  |-  ( ph  ->  2  e.  CC )
2117sqsqrd 11921 . . . . . 6  |-  ( ph  ->  ( ( sqr `  M
) ^ 2 )  =  M )
22 quart.m0 . . . . . 6  |-  ( ph  ->  M  =/=  0 )
2321, 22eqnetrd 2464 . . . . 5  |-  ( ph  ->  ( ( sqr `  M
) ^ 2 )  =/=  0 )
24 sqne0 11170 . . . . . 6  |-  ( ( sqr `  M )  e.  CC  ->  (
( ( sqr `  M
) ^ 2 )  =/=  0  <->  ( sqr `  M )  =/=  0
) )
2518, 24syl 15 . . . . 5  |-  ( ph  ->  ( ( ( sqr `  M ) ^ 2 )  =/=  0  <->  ( sqr `  M )  =/=  0 ) )
2623, 25mpbid 201 . . . 4  |-  ( ph  ->  ( sqr `  M
)  =/=  0 )
27 2ne0 9829 . . . . 5  |-  2  =/=  0
2827a1i 10 . . . 4  |-  ( ph  ->  2  =/=  0 )
2918, 20, 26, 28divne0d 9552 . . 3  |-  ( ph  ->  ( ( sqr `  M
)  /  2 )  =/=  0 )
301, 29eqnetrd 2464 . 2  |-  ( ph  ->  S  =/=  0 )
31 quart.i . . 3  |-  ( ph  ->  I  =  ( sqr `  ( ( -u ( S ^ 2 )  -  ( P  /  2
) )  +  ( ( Q  /  4
)  /  S ) ) ) )
3216simp1d 967 . . . . . . . 8  |-  ( ph  ->  S  e.  CC )
3332sqcld 11243 . . . . . . 7  |-  ( ph  ->  ( S ^ 2 )  e.  CC )
3433negcld 9144 . . . . . 6  |-  ( ph  -> 
-u ( S ^
2 )  e.  CC )
352, 3, 4, 5, 7, 8, 9quart1cl 20150 . . . . . . . 8  |-  ( ph  ->  ( P  e.  CC  /\  Q  e.  CC  /\  R  e.  CC )
)
3635simp1d 967 . . . . . . 7  |-  ( ph  ->  P  e.  CC )
3736halfcld 9956 . . . . . 6  |-  ( ph  ->  ( P  /  2
)  e.  CC )
3834, 37subcld 9157 . . . . 5  |-  ( ph  ->  ( -u ( S ^ 2 )  -  ( P  /  2
) )  e.  CC )
3935simp2d 968 . . . . . . 7  |-  ( ph  ->  Q  e.  CC )
40 4cn 9820 . . . . . . . 8  |-  4  e.  CC
4140a1i 10 . . . . . . 7  |-  ( ph  ->  4  e.  CC )
42 4nn 9879 . . . . . . . . 9  |-  4  e.  NN
4342nnne0i 9780 . . . . . . . 8  |-  4  =/=  0
4443a1i 10 . . . . . . 7  |-  ( ph  ->  4  =/=  0 )
4539, 41, 44divcld 9536 . . . . . 6  |-  ( ph  ->  ( Q  /  4
)  e.  CC )
4645, 32, 30divcld 9536 . . . . 5  |-  ( ph  ->  ( ( Q  / 
4 )  /  S
)  e.  CC )
4738, 46addcld 8854 . . . 4  |-  ( ph  ->  ( ( -u ( S ^ 2 )  -  ( P  /  2
) )  +  ( ( Q  /  4
)  /  S ) )  e.  CC )
4847sqrcld 11919 . . 3  |-  ( ph  ->  ( sqr `  (
( -u ( S ^
2 )  -  ( P  /  2 ) )  +  ( ( Q  /  4 )  /  S ) ) )  e.  CC )
4931, 48eqeltrd 2357 . 2  |-  ( ph  ->  I  e.  CC )
50 quart.j . . 3  |-  ( ph  ->  J  =  ( sqr `  ( ( -u ( S ^ 2 )  -  ( P  /  2
) )  -  (
( Q  /  4
)  /  S ) ) ) )
5138, 46subcld 9157 . . . 4  |-  ( ph  ->  ( ( -u ( S ^ 2 )  -  ( P  /  2
) )  -  (
( Q  /  4
)  /  S ) )  e.  CC )
5251sqrcld 11919 . . 3  |-  ( ph  ->  ( sqr `  (
( -u ( S ^
2 )  -  ( P  /  2 ) )  -  ( ( Q  /  4 )  /  S ) ) )  e.  CC )
5350, 52eqeltrd 2357 . 2  |-  ( ph  ->  J  e.  CC )
5430, 49, 533jca 1132 1  |-  ( ph  ->  ( S  =/=  0  /\  I  e.  CC  /\  J  e.  CC ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   ` cfv 5255  (class class class)co 5858   CCcc 8735   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    - cmin 9037   -ucneg 9038    / cdiv 9423   2c2 9795   3c3 9796   4c4 9797   5c5 9798   6c6 9799   7c7 9800   8c8 9801  ;cdc 10124   ^cexp 11104   sqrcsqr 11718    ^ c ccxp 19913
This theorem is referenced by:  quart  20157
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ioc 10661  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-fac 11289  df-bc 11316  df-hash 11338  df-shft 11562  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159  df-ef 12349  df-sin 12351  df-cos 12352  df-pi 12354  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-lp 16868  df-perf 16869  df-cn 16957  df-cnp 16958  df-haus 17043  df-tx 17257  df-hmeo 17446  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-limc 19216  df-dv 19217  df-log 19914  df-cxp 19915
  Copyright terms: Public domain W3C validator