MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quoremnn0 Unicode version

Theorem quoremnn0 10960
Description: Quotient and remainder of a nonnegative integer divided by a natural number. (Contributed by NM, 14-Aug-2008.)
Hypotheses
Ref Expression
quorem.1  |-  Q  =  ( |_ `  ( A  /  B ) )
quorem.2  |-  R  =  ( A  -  ( B  x.  Q )
)
Assertion
Ref Expression
quoremnn0  |-  ( ( A  e.  NN0  /\  B  e.  NN )  ->  ( ( Q  e. 
NN0  /\  R  e.  NN0 )  /\  ( R  <  B  /\  A  =  ( ( B  x.  Q )  +  R ) ) ) )

Proof of Theorem quoremnn0
StepHypRef Expression
1 quorem.1 . . 3  |-  Q  =  ( |_ `  ( A  /  B ) )
2 nn0re 9974 . . . . . 6  |-  ( A  e.  NN0  ->  A  e.  RR )
32adantr 451 . . . . 5  |-  ( ( A  e.  NN0  /\  B  e.  NN )  ->  A  e.  RR )
4 nnre 9753 . . . . . 6  |-  ( B  e.  NN  ->  B  e.  RR )
54adantl 452 . . . . 5  |-  ( ( A  e.  NN0  /\  B  e.  NN )  ->  B  e.  RR )
6 nnne0 9778 . . . . . 6  |-  ( B  e.  NN  ->  B  =/=  0 )
76adantl 452 . . . . 5  |-  ( ( A  e.  NN0  /\  B  e.  NN )  ->  B  =/=  0 )
83, 5, 7redivcld 9588 . . . 4  |-  ( ( A  e.  NN0  /\  B  e.  NN )  ->  ( A  /  B
)  e.  RR )
9 nn0ge0 9991 . . . . . 6  |-  ( A  e.  NN0  ->  0  <_  A )
102, 9jca 518 . . . . 5  |-  ( A  e.  NN0  ->  ( A  e.  RR  /\  0  <_  A ) )
11 nngt0 9775 . . . . . 6  |-  ( B  e.  NN  ->  0  <  B )
124, 11jca 518 . . . . 5  |-  ( B  e.  NN  ->  ( B  e.  RR  /\  0  <  B ) )
13 divge0 9625 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  0  <_  ( A  /  B ) )
1410, 12, 13syl2an 463 . . . 4  |-  ( ( A  e.  NN0  /\  B  e.  NN )  ->  0  <_  ( A  /  B ) )
15 flge0nn0 10948 . . . 4  |-  ( ( ( A  /  B
)  e.  RR  /\  0  <_  ( A  /  B ) )  -> 
( |_ `  ( A  /  B ) )  e.  NN0 )
168, 14, 15syl2anc 642 . . 3  |-  ( ( A  e.  NN0  /\  B  e.  NN )  ->  ( |_ `  ( A  /  B ) )  e.  NN0 )
171, 16syl5eqel 2367 . 2  |-  ( ( A  e.  NN0  /\  B  e.  NN )  ->  Q  e.  NN0 )
18 nn0z 10046 . . 3  |-  ( A  e.  NN0  ->  A  e.  ZZ )
19 quorem.2 . . . 4  |-  R  =  ( A  -  ( B  x.  Q )
)
201, 19quoremz 10959 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( ( Q  e.  ZZ  /\  R  e. 
NN0 )  /\  ( R  <  B  /\  A  =  ( ( B  x.  Q )  +  R ) ) ) )
2118, 20sylan 457 . 2  |-  ( ( A  e.  NN0  /\  B  e.  NN )  ->  ( ( Q  e.  ZZ  /\  R  e. 
NN0 )  /\  ( R  <  B  /\  A  =  ( ( B  x.  Q )  +  R ) ) ) )
22 simpl 443 . . . . . 6  |-  ( ( Q  e.  NN0  /\  Q  e.  ZZ )  ->  Q  e.  NN0 )
2322anim1i 551 . . . . 5  |-  ( ( ( Q  e.  NN0  /\  Q  e.  ZZ )  /\  R  e.  NN0 )  ->  ( Q  e. 
NN0  /\  R  e.  NN0 ) )
2423anasss 628 . . . 4  |-  ( ( Q  e.  NN0  /\  ( Q  e.  ZZ  /\  R  e.  NN0 )
)  ->  ( Q  e.  NN0  /\  R  e. 
NN0 ) )
2524anim1i 551 . . 3  |-  ( ( ( Q  e.  NN0  /\  ( Q  e.  ZZ  /\  R  e.  NN0 )
)  /\  ( R  <  B  /\  A  =  ( ( B  x.  Q )  +  R
) ) )  -> 
( ( Q  e. 
NN0  /\  R  e.  NN0 )  /\  ( R  <  B  /\  A  =  ( ( B  x.  Q )  +  R ) ) ) )
2625anasss 628 . 2  |-  ( ( Q  e.  NN0  /\  ( ( Q  e.  ZZ  /\  R  e. 
NN0 )  /\  ( R  <  B  /\  A  =  ( ( B  x.  Q )  +  R ) ) ) )  ->  ( ( Q  e.  NN0  /\  R  e.  NN0 )  /\  ( R  <  B  /\  A  =  ( ( B  x.  Q )  +  R ) ) ) )
2717, 21, 26syl2anc 642 1  |-  ( ( A  e.  NN0  /\  B  e.  NN )  ->  ( ( Q  e. 
NN0  /\  R  e.  NN0 )  /\  ( R  <  B  /\  A  =  ( ( B  x.  Q )  +  R ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   RRcr 8736   0cc0 8737    + caddc 8740    x. cmul 8742    < clt 8867    <_ cle 8868    - cmin 9037    / cdiv 9423   NNcn 9746   NN0cn0 9965   ZZcz 10024   |_cfl 10924
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-fl 10925
  Copyright terms: Public domain W3C validator