MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r0sep Unicode version

Theorem r0sep 17439
Description: The separation property of an R0 space. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
r0sep  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre )  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( A. o  e.  J  ( A  e.  o  ->  B  e.  o )  ->  A. o  e.  J  ( A  e.  o  <->  B  e.  o
) ) )
Distinct variable groups:    A, o    B, o    o, J    o, X

Proof of Theorem r0sep
Dummy variables  x  y  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2283 . . . 4  |-  ( z  e.  X  |->  { w  e.  J  |  z  e.  w } )  =  ( z  e.  X  |->  { w  e.  J  |  z  e.  w } )
21isr0 17428 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  ( (KQ `  J )  e.  Fre  <->  A. x  e.  X  A. y  e.  X  ( A. o  e.  J  ( x  e.  o  ->  y  e.  o )  ->  A. o  e.  J  ( x  e.  o  <->  y  e.  o ) ) ) )
32biimpa 470 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre )  ->  A. x  e.  X  A. y  e.  X  ( A. o  e.  J  ( x  e.  o  ->  y  e.  o )  ->  A. o  e.  J  ( x  e.  o  <->  y  e.  o ) ) )
4 eleq1 2343 . . . . . 6  |-  ( x  =  A  ->  (
x  e.  o  <->  A  e.  o ) )
54imbi1d 308 . . . . 5  |-  ( x  =  A  ->  (
( x  e.  o  ->  y  e.  o )  <->  ( A  e.  o  ->  y  e.  o ) ) )
65ralbidv 2563 . . . 4  |-  ( x  =  A  ->  ( A. o  e.  J  ( x  e.  o  ->  y  e.  o )  <->  A. o  e.  J  ( A  e.  o  ->  y  e.  o ) ) )
74bibi1d 310 . . . . 5  |-  ( x  =  A  ->  (
( x  e.  o  <-> 
y  e.  o )  <-> 
( A  e.  o  <-> 
y  e.  o ) ) )
87ralbidv 2563 . . . 4  |-  ( x  =  A  ->  ( A. o  e.  J  ( x  e.  o  <->  y  e.  o )  <->  A. o  e.  J  ( A  e.  o  <->  y  e.  o ) ) )
96, 8imbi12d 311 . . 3  |-  ( x  =  A  ->  (
( A. o  e.  J  ( x  e.  o  ->  y  e.  o )  ->  A. o  e.  J  ( x  e.  o  <->  y  e.  o ) )  <->  ( A. o  e.  J  ( A  e.  o  ->  y  e.  o )  ->  A. o  e.  J  ( A  e.  o  <->  y  e.  o ) ) ) )
10 eleq1 2343 . . . . . 6  |-  ( y  =  B  ->  (
y  e.  o  <->  B  e.  o ) )
1110imbi2d 307 . . . . 5  |-  ( y  =  B  ->  (
( A  e.  o  ->  y  e.  o )  <->  ( A  e.  o  ->  B  e.  o ) ) )
1211ralbidv 2563 . . . 4  |-  ( y  =  B  ->  ( A. o  e.  J  ( A  e.  o  ->  y  e.  o )  <->  A. o  e.  J  ( A  e.  o  ->  B  e.  o ) ) )
1310bibi2d 309 . . . . 5  |-  ( y  =  B  ->  (
( A  e.  o  <-> 
y  e.  o )  <-> 
( A  e.  o  <-> 
B  e.  o ) ) )
1413ralbidv 2563 . . . 4  |-  ( y  =  B  ->  ( A. o  e.  J  ( A  e.  o  <->  y  e.  o )  <->  A. o  e.  J  ( A  e.  o  <->  B  e.  o
) ) )
1512, 14imbi12d 311 . . 3  |-  ( y  =  B  ->  (
( A. o  e.  J  ( A  e.  o  ->  y  e.  o )  ->  A. o  e.  J  ( A  e.  o  <->  y  e.  o ) )  <->  ( A. o  e.  J  ( A  e.  o  ->  B  e.  o )  ->  A. o  e.  J  ( A  e.  o  <->  B  e.  o ) ) ) )
169, 15rspc2v 2890 . 2  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( A. x  e.  X  A. y  e.  X  ( A. o  e.  J  ( x  e.  o  ->  y  e.  o )  ->  A. o  e.  J  ( x  e.  o  <->  y  e.  o ) )  ->  ( A. o  e.  J  ( A  e.  o  ->  B  e.  o )  ->  A. o  e.  J  ( A  e.  o  <->  B  e.  o ) ) ) )
173, 16mpan9 455 1  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre )  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( A. o  e.  J  ( A  e.  o  ->  B  e.  o )  ->  A. o  e.  J  ( A  e.  o  <->  B  e.  o
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   {crab 2547    e. cmpt 4077   ` cfv 5255  TopOnctopon 16632   Frect1 17035  KQckq 17384
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-map 6774  df-topgen 13344  df-qtop 13410  df-top 16636  df-topon 16639  df-cld 16756  df-cn 16957  df-t1 17042  df-kq 17385
  Copyright terms: Public domain W3C validator