MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r0weon Unicode version

Theorem r0weon 7656
Description: A set-like well-ordering of the class of ordinal pairs. Proposition 7.58(1) of [TakeutiZaring] p. 54. (Contributed by Mario Carneiro, 7-Mar-2013.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
leweon.1  |-  L  =  { <. x ,  y
>.  |  ( (
x  e.  ( On 
X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x
)  e.  ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  e.  ( 2nd `  y
) ) ) ) }
r0weon.1  |-  R  =  { <. z ,  w >.  |  ( ( z  e.  ( On  X.  On )  /\  w  e.  ( On  X.  On ) )  /\  (
( ( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  /\  z L w ) ) ) }
Assertion
Ref Expression
r0weon  |-  ( R  We  ( On  X.  On )  /\  R Se  ( On  X.  On ) )
Distinct variable groups:    z, w, L    x, w, y, z
Allowed substitution hints:    R( x, y, z, w)    L( x, y)

Proof of Theorem r0weon
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 r0weon.1 . . . . 5  |-  R  =  { <. z ,  w >.  |  ( ( z  e.  ( On  X.  On )  /\  w  e.  ( On  X.  On ) )  /\  (
( ( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  /\  z L w ) ) ) }
2 fveq2 5541 . . . . . . . . . . . 12  |-  ( x  =  z  ->  ( 1st `  x )  =  ( 1st `  z
) )
3 fveq2 5541 . . . . . . . . . . . 12  |-  ( x  =  z  ->  ( 2nd `  x )  =  ( 2nd `  z
) )
42, 3uneq12d 3343 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
( 1st `  x
)  u.  ( 2nd `  x ) )  =  ( ( 1st `  z
)  u.  ( 2nd `  z ) ) )
5 eqid 2296 . . . . . . . . . . 11  |-  ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x
) ) )  =  ( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
6 fvex 5555 . . . . . . . . . . . 12  |-  ( 1st `  z )  e.  _V
7 fvex 5555 . . . . . . . . . . . 12  |-  ( 2nd `  z )  e.  _V
86, 7unex 4534 . . . . . . . . . . 11  |-  ( ( 1st `  z )  u.  ( 2nd `  z
) )  e.  _V
94, 5, 8fvmpt 5618 . . . . . . . . . 10  |-  ( z  e.  ( On  X.  On )  ->  ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) `
 z )  =  ( ( 1st `  z
)  u.  ( 2nd `  z ) ) )
10 fveq2 5541 . . . . . . . . . . . 12  |-  ( x  =  w  ->  ( 1st `  x )  =  ( 1st `  w
) )
11 fveq2 5541 . . . . . . . . . . . 12  |-  ( x  =  w  ->  ( 2nd `  x )  =  ( 2nd `  w
) )
1210, 11uneq12d 3343 . . . . . . . . . . 11  |-  ( x  =  w  ->  (
( 1st `  x
)  u.  ( 2nd `  x ) )  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) ) )
13 fvex 5555 . . . . . . . . . . . 12  |-  ( 1st `  w )  e.  _V
14 fvex 5555 . . . . . . . . . . . 12  |-  ( 2nd `  w )  e.  _V
1513, 14unex 4534 . . . . . . . . . . 11  |-  ( ( 1st `  w )  u.  ( 2nd `  w
) )  e.  _V
1612, 5, 15fvmpt 5618 . . . . . . . . . 10  |-  ( w  e.  ( On  X.  On )  ->  ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) `
 w )  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) ) )
179, 16breqan12d 4054 . . . . . . . . 9  |-  ( ( z  e.  ( On 
X.  On )  /\  w  e.  ( On  X.  On ) )  -> 
( ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x
) ) ) `  z )  _E  (
( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) `
 w )  <->  ( ( 1st `  z )  u.  ( 2nd `  z
) )  _E  (
( 1st `  w
)  u.  ( 2nd `  w ) ) ) )
1815epelc 4323 . . . . . . . . 9  |-  ( ( ( 1st `  z
)  u.  ( 2nd `  z ) )  _E  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  <->  ( ( 1st `  z )  u.  ( 2nd `  z
) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) ) )
1917, 18syl6bb 252 . . . . . . . 8  |-  ( ( z  e.  ( On 
X.  On )  /\  w  e.  ( On  X.  On ) )  -> 
( ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x
) ) ) `  z )  _E  (
( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) `
 w )  <->  ( ( 1st `  z )  u.  ( 2nd `  z
) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) ) ) )
209, 16eqeqan12d 2311 . . . . . . . . 9  |-  ( ( z  e.  ( On 
X.  On )  /\  w  e.  ( On  X.  On ) )  -> 
( ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x
) ) ) `  z )  =  ( ( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) `
 w )  <->  ( ( 1st `  z )  u.  ( 2nd `  z
) )  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) ) ) )
2120anbi1d 685 . . . . . . . 8  |-  ( ( z  e.  ( On 
X.  On )  /\  w  e.  ( On  X.  On ) )  -> 
( ( ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) `
 z )  =  ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) `  w )  /\  z L w )  <->  ( ( ( 1st `  z )  u.  ( 2nd `  z
) )  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  /\  z L w ) ) )
2219, 21orbi12d 690 . . . . . . 7  |-  ( ( z  e.  ( On 
X.  On )  /\  w  e.  ( On  X.  On ) )  -> 
( ( ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) `
 z )  _E  ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) `  w )  \/  ( ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) `
 z )  =  ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) `  w )  /\  z L w ) )  <->  ( (
( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  /\  z L w ) ) ) )
2322pm5.32i 618 . . . . . 6  |-  ( ( ( z  e.  ( On  X.  On )  /\  w  e.  ( On  X.  On ) )  /\  ( ( ( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) `
 z )  _E  ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) `  w )  \/  ( ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) `
 z )  =  ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) `  w )  /\  z L w ) ) )  <->  ( (
z  e.  ( On 
X.  On )  /\  w  e.  ( On  X.  On ) )  /\  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w )  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z
) )  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  /\  z L w ) ) ) )
2423opabbii 4099 . . . . 5  |-  { <. z ,  w >.  |  ( ( z  e.  ( On  X.  On )  /\  w  e.  ( On  X.  On ) )  /\  ( ( ( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) `
 z )  _E  ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) `  w )  \/  ( ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) `
 z )  =  ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) `  w )  /\  z L w ) ) ) }  =  { <. z ,  w >.  |  (
( z  e.  ( On  X.  On )  /\  w  e.  ( On  X.  On ) )  /\  ( ( ( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  /\  z L w ) ) ) }
251, 24eqtr4i 2319 . . . 4  |-  R  =  { <. z ,  w >.  |  ( ( z  e.  ( On  X.  On )  /\  w  e.  ( On  X.  On ) )  /\  (
( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) `  z )  _E  ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x
) ) ) `  w )  \/  (
( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) `  z )  =  ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x
) ) ) `  w )  /\  z L w ) ) ) }
26 xp1st 6165 . . . . . . . 8  |-  ( x  e.  ( On  X.  On )  ->  ( 1st `  x )  e.  On )
27 xp2nd 6166 . . . . . . . 8  |-  ( x  e.  ( On  X.  On )  ->  ( 2nd `  x )  e.  On )
28 fvex 5555 . . . . . . . . . 10  |-  ( 1st `  x )  e.  _V
2928elon 4417 . . . . . . . . 9  |-  ( ( 1st `  x )  e.  On  <->  Ord  ( 1st `  x ) )
30 fvex 5555 . . . . . . . . . 10  |-  ( 2nd `  x )  e.  _V
3130elon 4417 . . . . . . . . 9  |-  ( ( 2nd `  x )  e.  On  <->  Ord  ( 2nd `  x ) )
32 ordun 4510 . . . . . . . . 9  |-  ( ( Ord  ( 1st `  x
)  /\  Ord  ( 2nd `  x ) )  ->  Ord  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
3329, 31, 32syl2anb 465 . . . . . . . 8  |-  ( ( ( 1st `  x
)  e.  On  /\  ( 2nd `  x )  e.  On )  ->  Ord  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
3426, 27, 33syl2anc 642 . . . . . . 7  |-  ( x  e.  ( On  X.  On )  ->  Ord  (
( 1st `  x
)  u.  ( 2nd `  x ) ) )
3528, 30unex 4534 . . . . . . . 8  |-  ( ( 1st `  x )  u.  ( 2nd `  x
) )  e.  _V
3635elon 4417 . . . . . . 7  |-  ( ( ( 1st `  x
)  u.  ( 2nd `  x ) )  e.  On  <->  Ord  ( ( 1st `  x )  u.  ( 2nd `  x ) ) )
3734, 36sylibr 203 . . . . . 6  |-  ( x  e.  ( On  X.  On )  ->  ( ( 1st `  x )  u.  ( 2nd `  x
) )  e.  On )
385, 37fmpti 5699 . . . . 5  |-  ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x
) ) ) : ( On  X.  On )
--> On
3938a1i 10 . . . 4  |-  (  T. 
->  ( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) : ( On  X.  On ) --> On )
40 epweon 4591 . . . . 5  |-  _E  We  On
4140a1i 10 . . . 4  |-  (  T. 
->  _E  We  On )
42 leweon.1 . . . . . 6  |-  L  =  { <. x ,  y
>.  |  ( (
x  e.  ( On 
X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x
)  e.  ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  e.  ( 2nd `  y
) ) ) ) }
4342leweon 7655 . . . . 5  |-  L  We  ( On  X.  On )
4443a1i 10 . . . 4  |-  (  T. 
->  L  We  ( On  X.  On ) )
45 vex 2804 . . . . . . . 8  |-  u  e. 
_V
4645dmex 4957 . . . . . . 7  |-  dom  u  e.  _V
4745rnex 4958 . . . . . . 7  |-  ran  u  e.  _V
4846, 47unex 4534 . . . . . 6  |-  ( dom  u  u.  ran  u
)  e.  _V
49 imadmres 5181 . . . . . . 7  |-  ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
" dom  ( (
x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u ) )  =  ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) " u )
50 inss2 3403 . . . . . . . . . 10  |-  ( u  i^i  ( On  X.  On ) )  C_  ( On  X.  On )
51 ssun1 3351 . . . . . . . . . . . . . 14  |-  dom  u  C_  ( dom  u  u. 
ran  u )
5250sseli 3189 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( u  i^i  ( On  X.  On ) )  ->  x  e.  ( On  X.  On ) )
53 1st2nd2 6175 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( On  X.  On )  ->  x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >. )
5452, 53syl 15 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( u  i^i  ( On  X.  On ) )  ->  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )
55 inss1 3402 . . . . . . . . . . . . . . . . 17  |-  ( u  i^i  ( On  X.  On ) )  C_  u
5655sseli 3189 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( u  i^i  ( On  X.  On ) )  ->  x  e.  u )
5754, 56eqeltrrd 2371 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( u  i^i  ( On  X.  On ) )  ->  <. ( 1st `  x ) ,  ( 2nd `  x
) >.  e.  u )
5828, 30opeldm 4898 . . . . . . . . . . . . . . 15  |-  ( <.
( 1st `  x
) ,  ( 2nd `  x ) >.  e.  u  ->  ( 1st `  x
)  e.  dom  u
)
5957, 58syl 15 . . . . . . . . . . . . . 14  |-  ( x  e.  ( u  i^i  ( On  X.  On ) )  ->  ( 1st `  x )  e. 
dom  u )
6051, 59sseldi 3191 . . . . . . . . . . . . 13  |-  ( x  e.  ( u  i^i  ( On  X.  On ) )  ->  ( 1st `  x )  e.  ( dom  u  u. 
ran  u ) )
61 ssun2 3352 . . . . . . . . . . . . . 14  |-  ran  u  C_  ( dom  u  u. 
ran  u )
6228, 30opelrn 4926 . . . . . . . . . . . . . . 15  |-  ( <.
( 1st `  x
) ,  ( 2nd `  x ) >.  e.  u  ->  ( 2nd `  x
)  e.  ran  u
)
6357, 62syl 15 . . . . . . . . . . . . . 14  |-  ( x  e.  ( u  i^i  ( On  X.  On ) )  ->  ( 2nd `  x )  e. 
ran  u )
6461, 63sseldi 3191 . . . . . . . . . . . . 13  |-  ( x  e.  ( u  i^i  ( On  X.  On ) )  ->  ( 2nd `  x )  e.  ( dom  u  u. 
ran  u ) )
65 prssi 3787 . . . . . . . . . . . . 13  |-  ( ( ( 1st `  x
)  e.  ( dom  u  u.  ran  u
)  /\  ( 2nd `  x )  e.  ( dom  u  u.  ran  u ) )  ->  { ( 1st `  x
) ,  ( 2nd `  x ) }  C_  ( dom  u  u.  ran  u ) )
6660, 64, 65syl2anc 642 . . . . . . . . . . . 12  |-  ( x  e.  ( u  i^i  ( On  X.  On ) )  ->  { ( 1st `  x ) ,  ( 2nd `  x
) }  C_  ( dom  u  u.  ran  u
) )
6752, 26syl 15 . . . . . . . . . . . . 13  |-  ( x  e.  ( u  i^i  ( On  X.  On ) )  ->  ( 1st `  x )  e.  On )
6852, 27syl 15 . . . . . . . . . . . . 13  |-  ( x  e.  ( u  i^i  ( On  X.  On ) )  ->  ( 2nd `  x )  e.  On )
69 ordunpr 4633 . . . . . . . . . . . . 13  |-  ( ( ( 1st `  x
)  e.  On  /\  ( 2nd `  x )  e.  On )  -> 
( ( 1st `  x
)  u.  ( 2nd `  x ) )  e. 
{ ( 1st `  x
) ,  ( 2nd `  x ) } )
7067, 68, 69syl2anc 642 . . . . . . . . . . . 12  |-  ( x  e.  ( u  i^i  ( On  X.  On ) )  ->  (
( 1st `  x
)  u.  ( 2nd `  x ) )  e. 
{ ( 1st `  x
) ,  ( 2nd `  x ) } )
7166, 70sseldd 3194 . . . . . . . . . . 11  |-  ( x  e.  ( u  i^i  ( On  X.  On ) )  ->  (
( 1st `  x
)  u.  ( 2nd `  x ) )  e.  ( dom  u  u. 
ran  u ) )
7271rgen 2621 . . . . . . . . . 10  |-  A. x  e.  ( u  i^i  ( On  X.  On ) ) ( ( 1st `  x
)  u.  ( 2nd `  x ) )  e.  ( dom  u  u. 
ran  u )
73 ssrab 3264 . . . . . . . . . 10  |-  ( ( u  i^i  ( On 
X.  On ) ) 
C_  { x  e.  ( On  X.  On )  |  ( ( 1st `  x )  u.  ( 2nd `  x
) )  e.  ( dom  u  u.  ran  u ) }  <->  ( (
u  i^i  ( On  X.  On ) )  C_  ( On  X.  On )  /\  A. x  e.  ( u  i^i  ( On  X.  On ) ) ( ( 1st `  x
)  u.  ( 2nd `  x ) )  e.  ( dom  u  u. 
ran  u ) ) )
7450, 72, 73mpbir2an 886 . . . . . . . . 9  |-  ( u  i^i  ( On  X.  On ) )  C_  { x  e.  ( On  X.  On )  |  ( ( 1st `  x )  u.  ( 2nd `  x
) )  e.  ( dom  u  u.  ran  u ) }
75 dmres 4992 . . . . . . . . . 10  |-  dom  (
( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u )  =  ( u  i^i  dom  (
x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) )
7638fdmi 5410 . . . . . . . . . . 11  |-  dom  (
x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  =  ( On  X.  On )
7776ineq2i 3380 . . . . . . . . . 10  |-  ( u  i^i  dom  ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) )  =  ( u  i^i  ( On 
X.  On ) )
7875, 77eqtri 2316 . . . . . . . . 9  |-  dom  (
( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u )  =  ( u  i^i  ( On 
X.  On ) )
795mptpreima 5182 . . . . . . . . 9  |-  ( `' ( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
" ( dom  u  u.  ran  u ) )  =  { x  e.  ( On  X.  On )  |  ( ( 1st `  x )  u.  ( 2nd `  x
) )  e.  ( dom  u  u.  ran  u ) }
8074, 78, 793sstr4i 3230 . . . . . . . 8  |-  dom  (
( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u )  C_  ( `' ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) " ( dom  u  u.  ran  u
) )
81 funmpt 5306 . . . . . . . . 9  |-  Fun  (
x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
82 resss 4995 . . . . . . . . . 10  |-  ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u )  C_  (
x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
83 dmss 4894 . . . . . . . . . 10  |-  ( ( ( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u )  C_  (
x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  ->  dom  ( (
x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u )  C_  dom  ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) )
8482, 83ax-mp 8 . . . . . . . . 9  |-  dom  (
( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u )  C_  dom  ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
85 funimass3 5657 . . . . . . . . 9  |-  ( ( Fun  ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) )  /\  dom  (
( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u )  C_  dom  ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) )  ->  ( (
( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
" dom  ( (
x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u ) )  C_  ( dom  u  u.  ran  u )  <->  dom  ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u )  C_  ( `' ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) " ( dom  u  u.  ran  u
) ) ) )
8681, 84, 85mp2an 653 . . . . . . . 8  |-  ( ( ( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
" dom  ( (
x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u ) )  C_  ( dom  u  u.  ran  u )  <->  dom  ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u )  C_  ( `' ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) " ( dom  u  u.  ran  u
) ) )
8780, 86mpbir 200 . . . . . . 7  |-  ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
" dom  ( (
x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u ) )  C_  ( dom  u  u.  ran  u )
8849, 87eqsstr3i 3222 . . . . . 6  |-  ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
" u )  C_  ( dom  u  u.  ran  u )
8948, 88ssexi 4175 . . . . 5  |-  ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
" u )  e. 
_V
9089a1i 10 . . . 4  |-  (  T. 
->  ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) " u )  e.  _V )
9125, 39, 41, 44, 90fnwe 6247 . . 3  |-  (  T. 
->  R  We  ( On  X.  On ) )
92 epse 4392 . . . . 5  |-  _E Se  On
9392a1i 10 . . . 4  |-  (  T. 
->  _E Se  On )
9445uniex 4532 . . . . . . . 8  |-  U. u  e.  _V
9594pwex 4209 . . . . . . 7  |-  ~P U. u  e.  _V
9695, 95xpex 4817 . . . . . 6  |-  ( ~P
U. u  X.  ~P U. u )  e.  _V
975mptpreima 5182 . . . . . . . 8  |-  ( `' ( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
" u )  =  { x  e.  ( On  X.  On )  |  ( ( 1st `  x )  u.  ( 2nd `  x ) )  e.  u }
98 df-rab 2565 . . . . . . . 8  |-  { x  e.  ( On  X.  On )  |  ( ( 1st `  x )  u.  ( 2nd `  x
) )  e.  u }  =  { x  |  ( x  e.  ( On  X.  On )  /\  ( ( 1st `  x )  u.  ( 2nd `  x ) )  e.  u ) }
9997, 98eqtri 2316 . . . . . . 7  |-  ( `' ( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
" u )  =  { x  |  ( x  e.  ( On 
X.  On )  /\  ( ( 1st `  x
)  u.  ( 2nd `  x ) )  e.  u ) }
10053adantr 451 . . . . . . . . 9  |-  ( ( x  e.  ( On 
X.  On )  /\  ( ( 1st `  x
)  u.  ( 2nd `  x ) )  e.  u )  ->  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )
101 ssun1 3351 . . . . . . . . . . . 12  |-  ( 1st `  x )  C_  (
( 1st `  x
)  u.  ( 2nd `  x ) )
102 elssuni 3871 . . . . . . . . . . . . 13  |-  ( ( ( 1st `  x
)  u.  ( 2nd `  x ) )  e.  u  ->  ( ( 1st `  x )  u.  ( 2nd `  x
) )  C_  U. u
)
103102adantl 452 . . . . . . . . . . . 12  |-  ( ( x  e.  ( On 
X.  On )  /\  ( ( 1st `  x
)  u.  ( 2nd `  x ) )  e.  u )  ->  (
( 1st `  x
)  u.  ( 2nd `  x ) )  C_  U. u )
104101, 103syl5ss 3203 . . . . . . . . . . 11  |-  ( ( x  e.  ( On 
X.  On )  /\  ( ( 1st `  x
)  u.  ( 2nd `  x ) )  e.  u )  ->  ( 1st `  x )  C_  U. u )
10528elpw 3644 . . . . . . . . . . 11  |-  ( ( 1st `  x )  e.  ~P U. u  <->  ( 1st `  x ) 
C_  U. u )
106104, 105sylibr 203 . . . . . . . . . 10  |-  ( ( x  e.  ( On 
X.  On )  /\  ( ( 1st `  x
)  u.  ( 2nd `  x ) )  e.  u )  ->  ( 1st `  x )  e. 
~P U. u )
107 ssun2 3352 . . . . . . . . . . . 12  |-  ( 2nd `  x )  C_  (
( 1st `  x
)  u.  ( 2nd `  x ) )
108107, 103syl5ss 3203 . . . . . . . . . . 11  |-  ( ( x  e.  ( On 
X.  On )  /\  ( ( 1st `  x
)  u.  ( 2nd `  x ) )  e.  u )  ->  ( 2nd `  x )  C_  U. u )
10930elpw 3644 . . . . . . . . . . 11  |-  ( ( 2nd `  x )  e.  ~P U. u  <->  ( 2nd `  x ) 
C_  U. u )
110108, 109sylibr 203 . . . . . . . . . 10  |-  ( ( x  e.  ( On 
X.  On )  /\  ( ( 1st `  x
)  u.  ( 2nd `  x ) )  e.  u )  ->  ( 2nd `  x )  e. 
~P U. u )
111106, 110jca 518 . . . . . . . . 9  |-  ( ( x  e.  ( On 
X.  On )  /\  ( ( 1st `  x
)  u.  ( 2nd `  x ) )  e.  u )  ->  (
( 1st `  x
)  e.  ~P U. u  /\  ( 2nd `  x
)  e.  ~P U. u ) )
112 elxp6 6167 . . . . . . . . 9  |-  ( x  e.  ( ~P U. u  X.  ~P U. u
)  <->  ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ~P U. u  /\  ( 2nd `  x
)  e.  ~P U. u ) ) )
113100, 111, 112sylanbrc 645 . . . . . . . 8  |-  ( ( x  e.  ( On 
X.  On )  /\  ( ( 1st `  x
)  u.  ( 2nd `  x ) )  e.  u )  ->  x  e.  ( ~P U. u  X.  ~P U. u ) )
114113abssi 3261 . . . . . . 7  |-  { x  |  ( x  e.  ( On  X.  On )  /\  ( ( 1st `  x )  u.  ( 2nd `  x ) )  e.  u ) } 
C_  ( ~P U. u  X.  ~P U. u
)
11599, 114eqsstri 3221 . . . . . 6  |-  ( `' ( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
" u )  C_  ( ~P U. u  X.  ~P U. u )
11696, 115ssexi 4175 . . . . 5  |-  ( `' ( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
" u )  e. 
_V
117116a1i 10 . . . 4  |-  (  T. 
->  ( `' ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x
) ) ) "
u )  e.  _V )
11825, 39, 93, 117fnse 6248 . . 3  |-  (  T. 
->  R Se  ( On  X.  On ) )
11991, 118jca 518 . 2  |-  (  T. 
->  ( R  We  ( On  X.  On )  /\  R Se  ( On  X.  On ) ) )
120119trud 1314 1  |-  ( R  We  ( On  X.  On )  /\  R Se  ( On  X.  On ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    \/ wo 357    /\ wa 358    T. wtru 1307    = wceq 1632    e. wcel 1696   {cab 2282   A.wral 2556   {crab 2560   _Vcvv 2801    u. cun 3163    i^i cin 3164    C_ wss 3165   ~Pcpw 3638   {cpr 3654   <.cop 3656   U.cuni 3843   class class class wbr 4039   {copab 4092    e. cmpt 4093    _E cep 4319   Se wse 4366    We wwe 4367   Ord word 4407   Oncon0 4408    X. cxp 4703   `'ccnv 4704   dom cdm 4705   ran crn 4706    |` cres 4707   "cima 4708   Fun wfun 5265   -->wf 5267   ` cfv 5271   1stc1st 6136   2ndc2nd 6137
This theorem is referenced by:  infxpenlem  7657
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-1st 6138  df-2nd 6139
  Copyright terms: Public domain W3C validator