MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.23 Structured version   Unicode version

Theorem r19.23 2822
Description: Theorem 19.23 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 22-Oct-2010.) (Proof shortened by Mario Carneiro, 8-Oct-2016.)
Hypothesis
Ref Expression
r19.23.1  |-  F/ x ps
Assertion
Ref Expression
r19.23  |-  ( A. x  e.  A  ( ph  ->  ps )  <->  ( E. x  e.  A  ph  ->  ps ) )

Proof of Theorem r19.23
StepHypRef Expression
1 r19.23.1 . 2  |-  F/ x ps
2 r19.23t 2821 . 2  |-  ( F/ x ps  ->  ( A. x  e.  A  ( ph  ->  ps )  <->  ( E. x  e.  A  ph 
->  ps ) ) )
31, 2ax-mp 8 1  |-  ( A. x  e.  A  ( ph  ->  ps )  <->  ( E. x  e.  A  ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178   F/wnf 1554   A.wral 2706   E.wrex 2707
This theorem is referenced by:  r19.23v  2823  rexlimi  2824  rexlimd  2828
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-11 1762
This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1552  df-nf 1555  df-ral 2711  df-rex 2712
  Copyright terms: Public domain W3C validator