Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.23t Structured version   Unicode version

Theorem r19.23t 2822
 Description: Closed theorem form of r19.23 2823. (Contributed by NM, 4-Mar-2013.) (Revised by Mario Carneiro, 8-Oct-2016.)
Assertion
Ref Expression
r19.23t

Proof of Theorem r19.23t
StepHypRef Expression
1 19.23t 1819 . 2
2 df-ral 2712 . . 3
3 impexp 435 . . . 4
43albii 1576 . . 3
52, 4bitr4i 245 . 2
6 df-rex 2713 . . 3
76imbi1i 317 . 2
81, 5, 73bitr4g 281 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178   wa 360  wal 1550  wex 1551  wnf 1554   wcel 1726  wral 2707  wrex 2708 This theorem is referenced by:  r19.23  2823  rexlimd2  2830  riotasv3d  6600  riotasv3dOLD  6601 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-11 1762 This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1552  df-nf 1555  df-ral 2712  df-rex 2713
 Copyright terms: Public domain W3C validator