Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.26-2 Unicode version

Theorem r19.26-2 2676
 Description: Theorem 19.26 of [Margaris] p. 90 with 2 restricted quantifiers. (Contributed by NM, 10-Aug-2004.)
Assertion
Ref Expression
r19.26-2

Proof of Theorem r19.26-2
StepHypRef Expression
1 r19.26 2675 . . 3
21ralbii 2567 . 2
3 r19.26 2675 . 2
42, 3bitri 240 1
 Colors of variables: wff set class Syntax hints:   wb 176   wa 358  wral 2543 This theorem is referenced by:  fununi  5316  tz7.48lem  6453  isffth2  13790  ispos2  14082  isnsg2  14647  efgred  15057  dfrhm2  15498  caucfil  18709  aalioulem6  19717  ajmoi  21437  adjmo  22412  iccllyscon  23781  dfso3  24074  r19.26-2a  24934  ispridl2  26663  ishlat2  29543 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-11 1715 This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-nf 1532  df-ral 2548
 Copyright terms: Public domain W3C validator