Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.26-3 Unicode version

Theorem r19.26-3 2677
 Description: Theorem 19.26 of [Margaris] p. 90 with 3 restricted quantifiers. (Contributed by FL, 22-Nov-2010.)
Assertion
Ref Expression
r19.26-3

Proof of Theorem r19.26-3
StepHypRef Expression
1 df-3an 936 . . 3
21ralbii 2567 . 2
3 r19.26 2675 . 2
4 r19.26 2675 . . . 4
54anbi1i 676 . . 3
6 df-3an 936 . . 3
75, 6bitr4i 243 . 2
82, 3, 73bitri 262 1
 Colors of variables: wff set class Syntax hints:   wb 176   wa 358   w3a 934  wral 2543 This theorem is referenced by:  axeuclid  24591  axcontlem8  24599  svli2  25484  bsstrs  26146  nbssntrs  26147  stoweidlem60  27809 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-11 1715 This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936  df-tru 1310  df-nf 1532  df-ral 2548
 Copyright terms: Public domain W3C validator