Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.27zv Unicode version

Theorem r19.27zv 3553
 Description: Restricted quantifier version of Theorem 19.27 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 19-Aug-2004.)
Assertion
Ref Expression
r19.27zv
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem r19.27zv
StepHypRef Expression
1 r19.3rzv 3547 . . 3
21anbi2d 684 . 2
3 r19.26 2675 . 2
42, 3syl6rbbr 255 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 176   wa 358   wne 2446  wral 2543  c0 3455 This theorem is referenced by:  raaanv  3562  txflf  17701  dfso3  24074  dibglbN  31356 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-v 2790  df-dif 3155  df-nul 3456
 Copyright terms: Public domain W3C validator