MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.2uz Unicode version

Theorem r19.2uz 11851
Description: A version of r19.2z 3556 for upper integer quantifiers. (Contributed by Mario Carneiro, 15-Feb-2014.)
Hypothesis
Ref Expression
rexuz3.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
r19.2uz  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph  ->  E. k  e.  Z  ph )
Distinct variable groups:    j, M    ph, j    j, k, Z
Allowed substitution hints:    ph( k)    M( k)

Proof of Theorem r19.2uz
StepHypRef Expression
1 eluzelz 10254 . . . . . 6  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  ZZ )
2 uzid 10258 . . . . . 6  |-  ( j  e.  ZZ  ->  j  e.  ( ZZ>= `  j )
)
3 ne0i 3474 . . . . . 6  |-  ( j  e.  ( ZZ>= `  j
)  ->  ( ZZ>= `  j )  =/=  (/) )
41, 2, 33syl 18 . . . . 5  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  j )  =/=  (/) )
5 rexuz3.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
64, 5eleq2s 2388 . . . 4  |-  ( j  e.  Z  ->  ( ZZ>=
`  j )  =/=  (/) )
7 r19.2z 3556 . . . 4  |-  ( ( ( ZZ>= `  j )  =/=  (/)  /\  A. k  e.  ( ZZ>= `  j ) ph )  ->  E. k  e.  ( ZZ>= `  j ) ph )
86, 7sylan 457 . . 3  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ph )  ->  E. k  e.  (
ZZ>= `  j ) ph )
95uztrn2 10261 . . . . . . 7  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
109ex 423 . . . . . 6  |-  ( j  e.  Z  ->  (
k  e.  ( ZZ>= `  j )  ->  k  e.  Z ) )
1110anim1d 547 . . . . 5  |-  ( j  e.  Z  ->  (
( k  e.  (
ZZ>= `  j )  /\  ph )  ->  ( k  e.  Z  /\  ph )
) )
1211reximdv2 2665 . . . 4  |-  ( j  e.  Z  ->  ( E. k  e.  ( ZZ>=
`  j ) ph  ->  E. k  e.  Z  ph ) )
1312imp 418 . . 3  |-  ( ( j  e.  Z  /\  E. k  e.  ( ZZ>= `  j ) ph )  ->  E. k  e.  Z  ph )
148, 13syldan 456 . 2  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ph )  ->  E. k  e.  Z  ph )
1514rexlimiva 2675 1  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph  ->  E. k  e.  Z  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557   (/)c0 3468   ` cfv 5271   ZZcz 10040   ZZ>=cuz 10246
This theorem is referenced by:  lmcls  17046  1stccnp  17204  iscmet3lem1  18733  iscmet3lem2  18734  uniioombllem6  18959  ulmcau  19788  ulmbdd  19791  ulmcn  19792  ulmdvlem3  19795  iblulm  19799
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-pre-lttri 8827  ax-pre-lttrn 8828
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-neg 9056  df-z 10041  df-uz 10247
  Copyright terms: Public domain W3C validator