Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.3rz Structured version   Unicode version

Theorem r19.3rz 3711
 Description: Restricted quantification of wff not containing quantified variable. (Contributed by FL, 3-Jan-2008.)
Hypothesis
Ref Expression
r19.3rz.1
Assertion
Ref Expression
r19.3rz
Distinct variable group:   ,
Allowed substitution hint:   ()

Proof of Theorem r19.3rz
StepHypRef Expression
1 n0 3629 . . 3
2 biimt 326 . . 3
31, 2sylbi 188 . 2
4 df-ral 2702 . . 3
5 r19.3rz.1 . . . 4
6519.23 1819 . . 3
74, 6bitri 241 . 2
83, 7syl6bbr 255 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177  wal 1549  wex 1550  wnf 1553   wcel 1725   wne 2598  wral 2697  c0 3620 This theorem is referenced by:  r19.28z  3712  r19.27z  3718  2reu4a  27934 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-v 2950  df-dif 3315  df-nul 3621
 Copyright terms: Public domain W3C validator