MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.3rz Unicode version

Theorem r19.3rz 3558
Description: Restricted quantification of wff not containing quantified variable. (Contributed by FL, 3-Jan-2008.)
Hypothesis
Ref Expression
r19.3rz.1  |-  F/ x ph
Assertion
Ref Expression
r19.3rz  |-  ( A  =/=  (/)  ->  ( ph  <->  A. x  e.  A  ph ) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem r19.3rz
StepHypRef Expression
1 n0 3477 . . 3  |-  ( A  =/=  (/)  <->  E. x  x  e.  A )
2 biimt 325 . . 3  |-  ( E. x  x  e.  A  ->  ( ph  <->  ( E. x  x  e.  A  ->  ph ) ) )
31, 2sylbi 187 . 2  |-  ( A  =/=  (/)  ->  ( ph  <->  ( E. x  x  e.  A  ->  ph ) ) )
4 df-ral 2561 . . 3  |-  ( A. x  e.  A  ph  <->  A. x
( x  e.  A  ->  ph ) )
5 r19.3rz.1 . . . 4  |-  F/ x ph
6519.23 1809 . . 3  |-  ( A. x ( x  e.  A  ->  ph )  <->  ( E. x  x  e.  A  ->  ph ) )
74, 6bitri 240 . 2  |-  ( A. x  e.  A  ph  <->  ( E. x  x  e.  A  ->  ph ) )
83, 7syl6bbr 254 1  |-  ( A  =/=  (/)  ->  ( ph  <->  A. x  e.  A  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176   A.wal 1530   E.wex 1531   F/wnf 1534    e. wcel 1696    =/= wne 2459   A.wral 2556   (/)c0 3468
This theorem is referenced by:  r19.28z  3559  r19.27z  3565  2reu4a  28070
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-v 2803  df-dif 3168  df-nul 3469
  Copyright terms: Public domain W3C validator