MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1fnon Unicode version

Theorem r1fnon 7439
Description: The cumulative hierarchy of sets function is a function on the class of ordinal numbers. (Contributed by NM, 5-Oct-2003.) (Revised by Mario Carneiro, 10-Sep-2013.)
Assertion
Ref Expression
r1fnon  |-  R1  Fn  On

Proof of Theorem r1fnon
StepHypRef Expression
1 rdgfnon 6431 . 2  |-  rec (
( x  e.  _V  |->  ~P x ) ,  (/) )  Fn  On
2 df-r1 7436 . . 3  |-  R1  =  rec ( ( x  e. 
_V  |->  ~P x ) ,  (/) )
32fneq1i 5338 . 2  |-  ( R1  Fn  On  <->  rec (
( x  e.  _V  |->  ~P x ) ,  (/) )  Fn  On )
41, 3mpbir 200 1  |-  R1  Fn  On
Colors of variables: wff set class
Syntax hints:   _Vcvv 2788   (/)c0 3455   ~Pcpw 3625    e. cmpt 4077   Oncon0 4392    Fn wfn 5250   reccrdg 6422   R1cr1 7434
This theorem is referenced by:  r1suc  7442  r1lim  7444  r111  7447  r1ord  7452  r1ord3  7454  r1elss  7478  jech9.3  7486  onwf  7502  ssrankr1  7507  r1val3  7510  r1pw  7517  rankuni  7535  rankr1b  7536  r1om  7870  hsmexlem6  8057  smobeth  8208  wunr1om  8341  r1limwun  8358  r1wunlim  8359  tskr1om  8389  tskr1om2  8390  inar1  8397  rankcf  8399  inatsk  8400  r1tskina  8404  grur1  8442  grothomex  8451  aomclem4  27154
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-suc 4398  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-recs 6388  df-rdg 6423  df-r1 7436
  Copyright terms: Public domain W3C validator