MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1limg Unicode version

Theorem r1limg 7443
Description: Value of the cumulative hierarchy of sets function at a limit ordinal. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
r1limg  |-  ( ( A  e.  dom  R1  /\ 
Lim  A )  -> 
( R1 `  A
)  =  U_ x  e.  A  ( R1 `  x ) )
Distinct variable group:    x, A

Proof of Theorem r1limg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-r1 7436 . . . . 5  |-  R1  =  rec ( ( y  e. 
_V  |->  ~P y ) ,  (/) )
21dmeqi 4880 . . . 4  |-  dom  R1  =  dom  rec ( ( y  e.  _V  |->  ~P y ) ,  (/) )
32eleq2i 2347 . . 3  |-  ( A  e.  dom  R1  <->  A  e.  dom  rec ( ( y  e.  _V  |->  ~P y
) ,  (/) ) )
4 rdglimg 6438 . . 3  |-  ( ( A  e.  dom  rec ( ( y  e. 
_V  |->  ~P y ) ,  (/) )  /\  Lim  A
)  ->  ( rec ( ( y  e. 
_V  |->  ~P y ) ,  (/) ) `  A )  =  U. ( rec ( ( y  e. 
_V  |->  ~P y ) ,  (/) ) " A ) )
53, 4sylanb 458 . 2  |-  ( ( A  e.  dom  R1  /\ 
Lim  A )  -> 
( rec ( ( y  e.  _V  |->  ~P y ) ,  (/) ) `  A )  =  U. ( rec (
( y  e.  _V  |->  ~P y ) ,  (/) ) " A ) )
61fveq1i 5526 . 2  |-  ( R1
`  A )  =  ( rec ( ( y  e.  _V  |->  ~P y ) ,  (/) ) `  A )
7 r1funlim 7438 . . . . 5  |-  ( Fun 
R1  /\  Lim  dom  R1 )
87simpli 444 . . . 4  |-  Fun  R1
9 funiunfv 5774 . . . 4  |-  ( Fun 
R1  ->  U_ x  e.  A  ( R1 `  x )  =  U. ( R1
" A ) )
108, 9ax-mp 8 . . 3  |-  U_ x  e.  A  ( R1 `  x )  =  U. ( R1 " A )
111imaeq1i 5009 . . . 4  |-  ( R1
" A )  =  ( rec ( ( y  e.  _V  |->  ~P y ) ,  (/) ) " A )
1211unieqi 3837 . . 3  |-  U. ( R1 " A )  = 
U. ( rec (
( y  e.  _V  |->  ~P y ) ,  (/) ) " A )
1310, 12eqtri 2303 . 2  |-  U_ x  e.  A  ( R1 `  x )  =  U. ( rec ( ( y  e.  _V  |->  ~P y
) ,  (/) ) " A )
145, 6, 133eqtr4g 2340 1  |-  ( ( A  e.  dom  R1  /\ 
Lim  A )  -> 
( R1 `  A
)  =  U_ x  e.  A  ( R1 `  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   _Vcvv 2788   (/)c0 3455   ~Pcpw 3625   U.cuni 3827   U_ciun 3905    e. cmpt 4077   Lim wlim 4393   dom cdm 4689   "cima 4692   Fun wfun 5249   ` cfv 5255   reccrdg 6422   R1cr1 7434
This theorem is referenced by:  r1lim  7444  r1tr  7448  r1ordg  7450  r1pwss  7456  r1val1  7458
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-recs 6388  df-rdg 6423  df-r1 7436
  Copyright terms: Public domain W3C validator