MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1limg Structured version   Unicode version

Theorem r1limg 7689
Description: Value of the cumulative hierarchy of sets function at a limit ordinal. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
r1limg  |-  ( ( A  e.  dom  R1  /\ 
Lim  A )  -> 
( R1 `  A
)  =  U_ x  e.  A  ( R1 `  x ) )
Distinct variable group:    x, A

Proof of Theorem r1limg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-r1 7682 . . . . 5  |-  R1  =  rec ( ( y  e. 
_V  |->  ~P y ) ,  (/) )
21dmeqi 5063 . . . 4  |-  dom  R1  =  dom  rec ( ( y  e.  _V  |->  ~P y ) ,  (/) )
32eleq2i 2499 . . 3  |-  ( A  e.  dom  R1  <->  A  e.  dom  rec ( ( y  e.  _V  |->  ~P y
) ,  (/) ) )
4 rdglimg 6675 . . 3  |-  ( ( A  e.  dom  rec ( ( y  e. 
_V  |->  ~P y ) ,  (/) )  /\  Lim  A
)  ->  ( rec ( ( y  e. 
_V  |->  ~P y ) ,  (/) ) `  A )  =  U. ( rec ( ( y  e. 
_V  |->  ~P y ) ,  (/) ) " A ) )
53, 4sylanb 459 . 2  |-  ( ( A  e.  dom  R1  /\ 
Lim  A )  -> 
( rec ( ( y  e.  _V  |->  ~P y ) ,  (/) ) `  A )  =  U. ( rec (
( y  e.  _V  |->  ~P y ) ,  (/) ) " A ) )
61fveq1i 5721 . 2  |-  ( R1
`  A )  =  ( rec ( ( y  e.  _V  |->  ~P y ) ,  (/) ) `  A )
7 r1funlim 7684 . . . . 5  |-  ( Fun 
R1  /\  Lim  dom  R1 )
87simpli 445 . . . 4  |-  Fun  R1
9 funiunfv 5987 . . . 4  |-  ( Fun 
R1  ->  U_ x  e.  A  ( R1 `  x )  =  U. ( R1
" A ) )
108, 9ax-mp 8 . . 3  |-  U_ x  e.  A  ( R1 `  x )  =  U. ( R1 " A )
111imaeq1i 5192 . . . 4  |-  ( R1
" A )  =  ( rec ( ( y  e.  _V  |->  ~P y ) ,  (/) ) " A )
1211unieqi 4017 . . 3  |-  U. ( R1 " A )  = 
U. ( rec (
( y  e.  _V  |->  ~P y ) ,  (/) ) " A )
1310, 12eqtri 2455 . 2  |-  U_ x  e.  A  ( R1 `  x )  =  U. ( rec ( ( y  e.  _V  |->  ~P y
) ,  (/) ) " A )
145, 6, 133eqtr4g 2492 1  |-  ( ( A  e.  dom  R1  /\ 
Lim  A )  -> 
( R1 `  A
)  =  U_ x  e.  A  ( R1 `  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   _Vcvv 2948   (/)c0 3620   ~Pcpw 3791   U.cuni 4007   U_ciun 4085    e. cmpt 4258   Lim wlim 4574   dom cdm 4870   "cima 4873   Fun wfun 5440   ` cfv 5446   reccrdg 6659   R1cr1 7680
This theorem is referenced by:  r1lim  7690  r1tr  7694  r1ordg  7696  r1pwss  7702  r1val1  7704
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-recs 6625  df-rdg 6660  df-r1 7682
  Copyright terms: Public domain W3C validator