MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1limwun Structured version   Unicode version

Theorem r1limwun 8611
Description: Each limit stage in the cumulative hierarchy is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
r1limwun  |-  ( ( A  e.  V  /\  Lim  A )  ->  ( R1 `  A )  e. WUni
)

Proof of Theorem r1limwun
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1tr 7702 . . 3  |-  Tr  ( R1 `  A )
21a1i 11 . 2  |-  ( ( A  e.  V  /\  Lim  A )  ->  Tr  ( R1 `  A ) )
3 limelon 4644 . . . . . 6  |-  ( ( A  e.  V  /\  Lim  A )  ->  A  e.  On )
4 r1fnon 7693 . . . . . . 7  |-  R1  Fn  On
5 fndm 5544 . . . . . . 7  |-  ( R1  Fn  On  ->  dom  R1  =  On )
64, 5ax-mp 8 . . . . . 6  |-  dom  R1  =  On
73, 6syl6eleqr 2527 . . . . 5  |-  ( ( A  e.  V  /\  Lim  A )  ->  A  e.  dom  R1 )
8 onssr1 7757 . . . . 5  |-  ( A  e.  dom  R1  ->  A 
C_  ( R1 `  A ) )
97, 8syl 16 . . . 4  |-  ( ( A  e.  V  /\  Lim  A )  ->  A  C_  ( R1 `  A
) )
10 0ellim 4643 . . . . 5  |-  ( Lim 
A  ->  (/)  e.  A
)
1110adantl 453 . . . 4  |-  ( ( A  e.  V  /\  Lim  A )  ->  (/)  e.  A
)
129, 11sseldd 3349 . . 3  |-  ( ( A  e.  V  /\  Lim  A )  ->  (/)  e.  ( R1 `  A ) )
13 ne0i 3634 . . 3  |-  ( (/)  e.  ( R1 `  A
)  ->  ( R1 `  A )  =/=  (/) )
1412, 13syl 16 . 2  |-  ( ( A  e.  V  /\  Lim  A )  ->  ( R1 `  A )  =/=  (/) )
15 rankuni 7789 . . . . . 6  |-  ( rank `  U. x )  = 
U. ( rank `  x
)
16 rankon 7721 . . . . . . . . 9  |-  ( rank `  x )  e.  On
17 eloni 4591 . . . . . . . . 9  |-  ( (
rank `  x )  e.  On  ->  Ord  ( rank `  x ) )
18 orduniss 4676 . . . . . . . . 9  |-  ( Ord  ( rank `  x
)  ->  U. ( rank `  x )  C_  ( rank `  x )
)
1916, 17, 18mp2b 10 . . . . . . . 8  |-  U. ( rank `  x )  C_  ( rank `  x )
2019a1i 11 . . . . . . 7  |-  ( ( ( A  e.  V  /\  Lim  A )  /\  x  e.  ( R1 `  A ) )  ->  U. ( rank `  x
)  C_  ( rank `  x ) )
21 rankr1ai 7724 . . . . . . . 8  |-  ( x  e.  ( R1 `  A )  ->  ( rank `  x )  e.  A )
2221adantl 453 . . . . . . 7  |-  ( ( ( A  e.  V  /\  Lim  A )  /\  x  e.  ( R1 `  A ) )  -> 
( rank `  x )  e.  A )
23 onuni 4773 . . . . . . . . 9  |-  ( (
rank `  x )  e.  On  ->  U. ( rank `  x )  e.  On )
2416, 23ax-mp 8 . . . . . . . 8  |-  U. ( rank `  x )  e.  On
253adantr 452 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  Lim  A )  /\  x  e.  ( R1 `  A ) )  ->  A  e.  On )
26 ontr2 4628 . . . . . . . 8  |-  ( ( U. ( rank `  x
)  e.  On  /\  A  e.  On )  ->  ( ( U. ( rank `  x )  C_  ( rank `  x )  /\  ( rank `  x
)  e.  A )  ->  U. ( rank `  x
)  e.  A ) )
2724, 25, 26sylancr 645 . . . . . . 7  |-  ( ( ( A  e.  V  /\  Lim  A )  /\  x  e.  ( R1 `  A ) )  -> 
( ( U. ( rank `  x )  C_  ( rank `  x )  /\  ( rank `  x
)  e.  A )  ->  U. ( rank `  x
)  e.  A ) )
2820, 22, 27mp2and 661 . . . . . 6  |-  ( ( ( A  e.  V  /\  Lim  A )  /\  x  e.  ( R1 `  A ) )  ->  U. ( rank `  x
)  e.  A )
2915, 28syl5eqel 2520 . . . . 5  |-  ( ( ( A  e.  V  /\  Lim  A )  /\  x  e.  ( R1 `  A ) )  -> 
( rank `  U. x )  e.  A )
30 r1elwf 7722 . . . . . . . 8  |-  ( x  e.  ( R1 `  A )  ->  x  e.  U. ( R1 " On ) )
3130adantl 453 . . . . . . 7  |-  ( ( ( A  e.  V  /\  Lim  A )  /\  x  e.  ( R1 `  A ) )  ->  x  e.  U. ( R1 " On ) )
32 uniwf 7745 . . . . . . 7  |-  ( x  e.  U. ( R1
" On )  <->  U. x  e.  U. ( R1 " On ) )
3331, 32sylib 189 . . . . . 6  |-  ( ( ( A  e.  V  /\  Lim  A )  /\  x  e.  ( R1 `  A ) )  ->  U. x  e.  U. ( R1 " On ) )
347adantr 452 . . . . . 6  |-  ( ( ( A  e.  V  /\  Lim  A )  /\  x  e.  ( R1 `  A ) )  ->  A  e.  dom  R1 )
35 rankr1ag 7728 . . . . . 6  |-  ( ( U. x  e.  U. ( R1 " On )  /\  A  e.  dom  R1 )  ->  ( U. x  e.  ( R1 `  A )  <->  ( rank ` 
U. x )  e.  A ) )
3633, 34, 35syl2anc 643 . . . . 5  |-  ( ( ( A  e.  V  /\  Lim  A )  /\  x  e.  ( R1 `  A ) )  -> 
( U. x  e.  ( R1 `  A
)  <->  ( rank `  U. x )  e.  A
) )
3729, 36mpbird 224 . . . 4  |-  ( ( ( A  e.  V  /\  Lim  A )  /\  x  e.  ( R1 `  A ) )  ->  U. x  e.  ( R1 `  A ) )
38 r1pwcl 7773 . . . . . 6  |-  ( Lim 
A  ->  ( x  e.  ( R1 `  A
)  <->  ~P x  e.  ( R1 `  A ) ) )
3938adantl 453 . . . . 5  |-  ( ( A  e.  V  /\  Lim  A )  ->  (
x  e.  ( R1
`  A )  <->  ~P x  e.  ( R1 `  A
) ) )
4039biimpa 471 . . . 4  |-  ( ( ( A  e.  V  /\  Lim  A )  /\  x  e.  ( R1 `  A ) )  ->  ~P x  e.  ( R1 `  A ) )
4130ad2antlr 708 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  Lim  A
)  /\  x  e.  ( R1 `  A ) )  /\  y  e.  ( R1 `  A
) )  ->  x  e.  U. ( R1 " On ) )
42 r1elwf 7722 . . . . . . . . 9  |-  ( y  e.  ( R1 `  A )  ->  y  e.  U. ( R1 " On ) )
4342adantl 453 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  Lim  A
)  /\  x  e.  ( R1 `  A ) )  /\  y  e.  ( R1 `  A
) )  ->  y  e.  U. ( R1 " On ) )
44 rankprb 7777 . . . . . . . 8  |-  ( ( x  e.  U. ( R1 " On )  /\  y  e.  U. ( R1 " On ) )  ->  ( rank `  {
x ,  y } )  =  suc  (
( rank `  x )  u.  ( rank `  y
) ) )
4541, 43, 44syl2anc 643 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  Lim  A
)  /\  x  e.  ( R1 `  A ) )  /\  y  e.  ( R1 `  A
) )  ->  ( rank `  { x ,  y } )  =  suc  ( ( rank `  x )  u.  ( rank `  y ) ) )
46 limord 4640 . . . . . . . . . 10  |-  ( Lim 
A  ->  Ord  A )
4746ad3antlr 712 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  Lim  A
)  /\  x  e.  ( R1 `  A ) )  /\  y  e.  ( R1 `  A
) )  ->  Ord  A )
4822adantr 452 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  Lim  A
)  /\  x  e.  ( R1 `  A ) )  /\  y  e.  ( R1 `  A
) )  ->  ( rank `  x )  e.  A )
49 rankr1ai 7724 . . . . . . . . . 10  |-  ( y  e.  ( R1 `  A )  ->  ( rank `  y )  e.  A )
5049adantl 453 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  Lim  A
)  /\  x  e.  ( R1 `  A ) )  /\  y  e.  ( R1 `  A
) )  ->  ( rank `  y )  e.  A )
51 ordunel 4807 . . . . . . . . 9  |-  ( ( Ord  A  /\  ( rank `  x )  e.  A  /\  ( rank `  y )  e.  A
)  ->  ( ( rank `  x )  u.  ( rank `  y
) )  e.  A
)
5247, 48, 50, 51syl3anc 1184 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  Lim  A
)  /\  x  e.  ( R1 `  A ) )  /\  y  e.  ( R1 `  A
) )  ->  (
( rank `  x )  u.  ( rank `  y
) )  e.  A
)
53 limsuc 4829 . . . . . . . . 9  |-  ( Lim 
A  ->  ( (
( rank `  x )  u.  ( rank `  y
) )  e.  A  <->  suc  ( ( rank `  x
)  u.  ( rank `  y ) )  e.  A ) )
5453ad3antlr 712 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  Lim  A
)  /\  x  e.  ( R1 `  A ) )  /\  y  e.  ( R1 `  A
) )  ->  (
( ( rank `  x
)  u.  ( rank `  y ) )  e.  A  <->  suc  ( ( rank `  x )  u.  ( rank `  y ) )  e.  A ) )
5552, 54mpbid 202 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  Lim  A
)  /\  x  e.  ( R1 `  A ) )  /\  y  e.  ( R1 `  A
) )  ->  suc  ( ( rank `  x
)  u.  ( rank `  y ) )  e.  A )
5645, 55eqeltrd 2510 . . . . . 6  |-  ( ( ( ( A  e.  V  /\  Lim  A
)  /\  x  e.  ( R1 `  A ) )  /\  y  e.  ( R1 `  A
) )  ->  ( rank `  { x ,  y } )  e.  A )
57 prwf 7737 . . . . . . . 8  |-  ( ( x  e.  U. ( R1 " On )  /\  y  e.  U. ( R1 " On ) )  ->  { x ,  y }  e.  U. ( R1 " On ) )
5841, 43, 57syl2anc 643 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  Lim  A
)  /\  x  e.  ( R1 `  A ) )  /\  y  e.  ( R1 `  A
) )  ->  { x ,  y }  e.  U. ( R1 " On ) )
5934adantr 452 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  Lim  A
)  /\  x  e.  ( R1 `  A ) )  /\  y  e.  ( R1 `  A
) )  ->  A  e.  dom  R1 )
60 rankr1ag 7728 . . . . . . 7  |-  ( ( { x ,  y }  e.  U. ( R1 " On )  /\  A  e.  dom  R1 )  ->  ( { x ,  y }  e.  ( R1 `  A )  <-> 
( rank `  { x ,  y } )  e.  A ) )
6158, 59, 60syl2anc 643 . . . . . 6  |-  ( ( ( ( A  e.  V  /\  Lim  A
)  /\  x  e.  ( R1 `  A ) )  /\  y  e.  ( R1 `  A
) )  ->  ( { x ,  y }  e.  ( R1
`  A )  <->  ( rank `  { x ,  y } )  e.  A
) )
6256, 61mpbird 224 . . . . 5  |-  ( ( ( ( A  e.  V  /\  Lim  A
)  /\  x  e.  ( R1 `  A ) )  /\  y  e.  ( R1 `  A
) )  ->  { x ,  y }  e.  ( R1 `  A ) )
6362ralrimiva 2789 . . . 4  |-  ( ( ( A  e.  V  /\  Lim  A )  /\  x  e.  ( R1 `  A ) )  ->  A. y  e.  ( R1 `  A ) { x ,  y }  e.  ( R1 `  A ) )
6437, 40, 633jca 1134 . . 3  |-  ( ( ( A  e.  V  /\  Lim  A )  /\  x  e.  ( R1 `  A ) )  -> 
( U. x  e.  ( R1 `  A
)  /\  ~P x  e.  ( R1 `  A
)  /\  A. y  e.  ( R1 `  A
) { x ,  y }  e.  ( R1 `  A ) ) )
6564ralrimiva 2789 . 2  |-  ( ( A  e.  V  /\  Lim  A )  ->  A. x  e.  ( R1 `  A
) ( U. x  e.  ( R1 `  A
)  /\  ~P x  e.  ( R1 `  A
)  /\  A. y  e.  ( R1 `  A
) { x ,  y }  e.  ( R1 `  A ) ) )
66 fvex 5742 . . 3  |-  ( R1
`  A )  e. 
_V
67 iswun 8579 . . 3  |-  ( ( R1 `  A )  e.  _V  ->  (
( R1 `  A
)  e. WUni  <->  ( Tr  ( R1 `  A )  /\  ( R1 `  A )  =/=  (/)  /\  A. x  e.  ( R1 `  A
) ( U. x  e.  ( R1 `  A
)  /\  ~P x  e.  ( R1 `  A
)  /\  A. y  e.  ( R1 `  A
) { x ,  y }  e.  ( R1 `  A ) ) ) ) )
6866, 67ax-mp 8 . 2  |-  ( ( R1 `  A )  e. WUni 
<->  ( Tr  ( R1
`  A )  /\  ( R1 `  A )  =/=  (/)  /\  A. x  e.  ( R1 `  A
) ( U. x  e.  ( R1 `  A
)  /\  ~P x  e.  ( R1 `  A
)  /\  A. y  e.  ( R1 `  A
) { x ,  y }  e.  ( R1 `  A ) ) ) )
692, 14, 65, 68syl3anbrc 1138 1  |-  ( ( A  e.  V  /\  Lim  A )  ->  ( R1 `  A )  e. WUni
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2599   A.wral 2705   _Vcvv 2956    u. cun 3318    C_ wss 3320   (/)c0 3628   ~Pcpw 3799   {cpr 3815   U.cuni 4015   Tr wtr 4302   Ord word 4580   Oncon0 4581   Lim wlim 4582   suc csuc 4583   dom cdm 4878   "cima 4881    Fn wfn 5449   ` cfv 5454   R1cr1 7688   rankcrnk 7689  WUnicwun 8575
This theorem is referenced by:  r1wunlim  8612  wunex3  8616
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-reg 7560  ax-inf2 7596
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-recs 6633  df-rdg 6668  df-r1 7690  df-rank 7691  df-wun 8577
  Copyright terms: Public domain W3C validator