MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1pval Unicode version

Theorem r1pval 19595
Description: Value of the polynomial remainder function. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
r1pval.e  |-  E  =  (rem1p `  R )
r1pval.p  |-  P  =  (Poly1 `  R )
r1pval.b  |-  B  =  ( Base `  P
)
r1pval.q  |-  Q  =  (quot1p `  R )
r1pval.t  |-  .x.  =  ( .r `  P )
r1pval.m  |-  .-  =  ( -g `  P )
Assertion
Ref Expression
r1pval  |-  ( ( F  e.  B  /\  G  e.  B )  ->  ( F E G )  =  ( F 
.-  ( ( F Q G )  .x.  G ) ) )

Proof of Theorem r1pval
Dummy variables  b 
f  g  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1pval.p . . . . 5  |-  P  =  (Poly1 `  R )
2 r1pval.b . . . . 5  |-  B  =  ( Base `  P
)
31, 2elbasfv 13238 . . . 4  |-  ( F  e.  B  ->  R  e.  _V )
43adantr 451 . . 3  |-  ( ( F  e.  B  /\  G  e.  B )  ->  R  e.  _V )
5 r1pval.e . . . 4  |-  E  =  (rem1p `  R )
6 fveq2 5563 . . . . . . . . . 10  |-  ( r  =  R  ->  (Poly1 `  r )  =  (Poly1 `  R ) )
76, 1syl6eqr 2366 . . . . . . . . 9  |-  ( r  =  R  ->  (Poly1 `  r )  =  P )
87fveq2d 5567 . . . . . . . 8  |-  ( r  =  R  ->  ( Base `  (Poly1 `  r ) )  =  ( Base `  P
) )
98, 2syl6eqr 2366 . . . . . . 7  |-  ( r  =  R  ->  ( Base `  (Poly1 `  r ) )  =  B )
109csbeq1d 3121 . . . . . 6  |-  ( r  =  R  ->  [_ ( Base `  (Poly1 `  r ) )  /  b ]_ (
f  e.  b ,  g  e.  b  |->  ( f ( -g `  (Poly1 `  r ) ) ( ( f (quot1p `  r
) g ) ( .r `  (Poly1 `  r
) ) g ) ) )  =  [_ B  /  b ]_ (
f  e.  b ,  g  e.  b  |->  ( f ( -g `  (Poly1 `  r ) ) ( ( f (quot1p `  r
) g ) ( .r `  (Poly1 `  r
) ) g ) ) ) )
11 fvex 5577 . . . . . . . . 9  |-  ( Base `  P )  e.  _V
122, 11eqeltri 2386 . . . . . . . 8  |-  B  e. 
_V
1312a1i 10 . . . . . . 7  |-  ( r  =  R  ->  B  e.  _V )
14 simpr 447 . . . . . . . 8  |-  ( ( r  =  R  /\  b  =  B )  ->  b  =  B )
157fveq2d 5567 . . . . . . . . . . 11  |-  ( r  =  R  ->  ( -g `  (Poly1 `  r ) )  =  ( -g `  P
) )
16 r1pval.m . . . . . . . . . . 11  |-  .-  =  ( -g `  P )
1715, 16syl6eqr 2366 . . . . . . . . . 10  |-  ( r  =  R  ->  ( -g `  (Poly1 `  r ) )  =  .-  )
18 eqidd 2317 . . . . . . . . . 10  |-  ( r  =  R  ->  f  =  f )
197fveq2d 5567 . . . . . . . . . . . 12  |-  ( r  =  R  ->  ( .r `  (Poly1 `  r ) )  =  ( .r `  P ) )
20 r1pval.t . . . . . . . . . . . 12  |-  .x.  =  ( .r `  P )
2119, 20syl6eqr 2366 . . . . . . . . . . 11  |-  ( r  =  R  ->  ( .r `  (Poly1 `  r ) )  =  .x.  )
22 fveq2 5563 . . . . . . . . . . . . 13  |-  ( r  =  R  ->  (quot1p `  r )  =  (quot1p `  R ) )
23 r1pval.q . . . . . . . . . . . . 13  |-  Q  =  (quot1p `  R )
2422, 23syl6eqr 2366 . . . . . . . . . . . 12  |-  ( r  =  R  ->  (quot1p `  r )  =  Q )
2524oveqd 5917 . . . . . . . . . . 11  |-  ( r  =  R  ->  (
f (quot1p `  r ) g )  =  ( f Q g ) )
26 eqidd 2317 . . . . . . . . . . 11  |-  ( r  =  R  ->  g  =  g )
2721, 25, 26oveq123d 5921 . . . . . . . . . 10  |-  ( r  =  R  ->  (
( f (quot1p `  r
) g ) ( .r `  (Poly1 `  r
) ) g )  =  ( ( f Q g )  .x.  g ) )
2817, 18, 27oveq123d 5921 . . . . . . . . 9  |-  ( r  =  R  ->  (
f ( -g `  (Poly1 `  r ) ) ( ( f (quot1p `  r
) g ) ( .r `  (Poly1 `  r
) ) g ) )  =  ( f 
.-  ( ( f Q g )  .x.  g ) ) )
2928adantr 451 . . . . . . . 8  |-  ( ( r  =  R  /\  b  =  B )  ->  ( f ( -g `  (Poly1 `  r ) ) ( ( f (quot1p `  r ) g ) ( .r `  (Poly1 `  r ) ) g ) )  =  ( f  .-  ( ( f Q g ) 
.x.  g ) ) )
3014, 14, 29mpt2eq123dv 5952 . . . . . . 7  |-  ( ( r  =  R  /\  b  =  B )  ->  ( f  e.  b ,  g  e.  b 
|->  ( f ( -g `  (Poly1 `  r ) ) ( ( f (quot1p `  r ) g ) ( .r `  (Poly1 `  r ) ) g ) ) )  =  ( f  e.  B ,  g  e.  B  |->  ( f  .-  (
( f Q g )  .x.  g ) ) ) )
3113, 30csbied 3157 . . . . . 6  |-  ( r  =  R  ->  [_ B  /  b ]_ (
f  e.  b ,  g  e.  b  |->  ( f ( -g `  (Poly1 `  r ) ) ( ( f (quot1p `  r
) g ) ( .r `  (Poly1 `  r
) ) g ) ) )  =  ( f  e.  B , 
g  e.  B  |->  ( f  .-  ( ( f Q g ) 
.x.  g ) ) ) )
3210, 31eqtrd 2348 . . . . 5  |-  ( r  =  R  ->  [_ ( Base `  (Poly1 `  r ) )  /  b ]_ (
f  e.  b ,  g  e.  b  |->  ( f ( -g `  (Poly1 `  r ) ) ( ( f (quot1p `  r
) g ) ( .r `  (Poly1 `  r
) ) g ) ) )  =  ( f  e.  B , 
g  e.  B  |->  ( f  .-  ( ( f Q g ) 
.x.  g ) ) ) )
33 df-r1p 19572 . . . . 5  |- rem1p  =  (
r  e.  _V  |->  [_ ( Base `  (Poly1 `  r
) )  /  b ]_ ( f  e.  b ,  g  e.  b 
|->  ( f ( -g `  (Poly1 `  r ) ) ( ( f (quot1p `  r ) g ) ( .r `  (Poly1 `  r ) ) g ) ) ) )
3412, 12mpt2ex 6240 . . . . 5  |-  ( f  e.  B ,  g  e.  B  |->  ( f 
.-  ( ( f Q g )  .x.  g ) ) )  e.  _V
3532, 33, 34fvmpt 5640 . . . 4  |-  ( R  e.  _V  ->  (rem1p `  R )  =  ( f  e.  B , 
g  e.  B  |->  ( f  .-  ( ( f Q g ) 
.x.  g ) ) ) )
365, 35syl5eq 2360 . . 3  |-  ( R  e.  _V  ->  E  =  ( f  e.  B ,  g  e.  B  |->  ( f  .-  ( ( f Q g )  .x.  g
) ) ) )
374, 36syl 15 . 2  |-  ( ( F  e.  B  /\  G  e.  B )  ->  E  =  ( f  e.  B ,  g  e.  B  |->  ( f 
.-  ( ( f Q g )  .x.  g ) ) ) )
38 simpl 443 . . . 4  |-  ( ( f  =  F  /\  g  =  G )  ->  f  =  F )
39 oveq12 5909 . . . . 5  |-  ( ( f  =  F  /\  g  =  G )  ->  ( f Q g )  =  ( F Q G ) )
40 simpr 447 . . . . 5  |-  ( ( f  =  F  /\  g  =  G )  ->  g  =  G )
4139, 40oveq12d 5918 . . . 4  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( f Q g )  .x.  g
)  =  ( ( F Q G ) 
.x.  G ) )
4238, 41oveq12d 5918 . . 3  |-  ( ( f  =  F  /\  g  =  G )  ->  ( f  .-  (
( f Q g )  .x.  g ) )  =  ( F 
.-  ( ( F Q G )  .x.  G ) ) )
4342adantl 452 . 2  |-  ( ( ( F  e.  B  /\  G  e.  B
)  /\  ( f  =  F  /\  g  =  G ) )  -> 
( f  .-  (
( f Q g )  .x.  g ) )  =  ( F 
.-  ( ( F Q G )  .x.  G ) ) )
44 simpl 443 . 2  |-  ( ( F  e.  B  /\  G  e.  B )  ->  F  e.  B )
45 simpr 447 . 2  |-  ( ( F  e.  B  /\  G  e.  B )  ->  G  e.  B )
46 ovex 5925 . . 3  |-  ( F 
.-  ( ( F Q G )  .x.  G ) )  e. 
_V
4746a1i 10 . 2  |-  ( ( F  e.  B  /\  G  e.  B )  ->  ( F  .-  (
( F Q G )  .x.  G ) )  e.  _V )
4837, 43, 44, 45, 47ovmpt2d 6017 1  |-  ( ( F  e.  B  /\  G  e.  B )  ->  ( F E G )  =  ( F 
.-  ( ( F Q G )  .x.  G ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1633    e. wcel 1701   _Vcvv 2822   [_csb 3115   ` cfv 5292  (class class class)co 5900    e. cmpt2 5902   Basecbs 13195   .rcmulr 13256   -gcsg 14414  Poly1cpl1 16301  quot1pcq1p 19566  rem1pcr1p 19567
This theorem is referenced by:  r1pcl  19596  r1pdeglt  19597  r1pid  19598  dvdsr1p  19600  ig1pdvds  19615
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-rep 4168  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-ral 2582  df-rex 2583  df-reu 2584  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-op 3683  df-uni 3865  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-id 4346  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-1st 6164  df-2nd 6165  df-slot 13199  df-base 13200  df-r1p 19572
  Copyright terms: Public domain W3C validator