MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1pw Unicode version

Theorem r1pw 7533
Description: A stronger property of  R1 than rankpw 7531. The latter merely proves that  R1 of the successor is a power set, but here we prove that if  A is in the cumulative hierarchy, then  ~P A is in the cumulative hierarchy of the successor. (Contributed by Raph Levien, 29-May-2004.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
r1pw  |-  ( B  e.  On  ->  ( A  e.  ( R1 `  B )  <->  ~P A  e.  ( R1 `  suc  B ) ) )

Proof of Theorem r1pw
StepHypRef Expression
1 rankpwi 7511 . . . . . 6  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  ~P A )  =  suc  ( rank `  A ) )
21eleq1d 2362 . . . . 5  |-  ( A  e.  U. ( R1
" On )  -> 
( ( rank `  ~P A )  e.  suc  B  <->  suc  ( rank `  A
)  e.  suc  B
) )
3 eloni 4418 . . . . . . 7  |-  ( B  e.  On  ->  Ord  B )
4 ordsucelsuc 4629 . . . . . . 7  |-  ( Ord 
B  ->  ( ( rank `  A )  e.  B  <->  suc  ( rank `  A
)  e.  suc  B
) )
53, 4syl 15 . . . . . 6  |-  ( B  e.  On  ->  (
( rank `  A )  e.  B  <->  suc  ( rank `  A
)  e.  suc  B
) )
65bicomd 192 . . . . 5  |-  ( B  e.  On  ->  ( suc  ( rank `  A
)  e.  suc  B  <->  (
rank `  A )  e.  B ) )
72, 6sylan9bb 680 . . . 4  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  On )  ->  ( ( rank `  ~P A )  e.  suc  B  <-> 
( rank `  A )  e.  B ) )
8 pwwf 7495 . . . . . 6  |-  ( A  e.  U. ( R1
" On )  <->  ~P A  e.  U. ( R1 " On ) )
98biimpi 186 . . . . 5  |-  ( A  e.  U. ( R1
" On )  ->  ~P A  e.  U. ( R1 " On ) )
10 suceloni 4620 . . . . . 6  |-  ( B  e.  On  ->  suc  B  e.  On )
11 r1fnon 7455 . . . . . . 7  |-  R1  Fn  On
12 fndm 5359 . . . . . . 7  |-  ( R1  Fn  On  ->  dom  R1  =  On )
1311, 12ax-mp 8 . . . . . 6  |-  dom  R1  =  On
1410, 13syl6eleqr 2387 . . . . 5  |-  ( B  e.  On  ->  suc  B  e.  dom  R1 )
15 rankr1ag 7490 . . . . 5  |-  ( ( ~P A  e.  U. ( R1 " On )  /\  suc  B  e. 
dom  R1 )  ->  ( ~P A  e.  ( R1 `  suc  B )  <-> 
( rank `  ~P A )  e.  suc  B ) )
169, 14, 15syl2an 463 . . . 4  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  On )  ->  ( ~P A  e.  ( R1 `  suc  B )  <->  ( rank `  ~P A )  e.  suc  B ) )
1713eleq2i 2360 . . . . 5  |-  ( B  e.  dom  R1  <->  B  e.  On )
18 rankr1ag 7490 . . . . 5  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  dom  R1 )  ->  ( A  e.  ( R1 `  B
)  <->  ( rank `  A
)  e.  B ) )
1917, 18sylan2br 462 . . . 4  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  On )  ->  ( A  e.  ( R1 `  B )  <-> 
( rank `  A )  e.  B ) )
207, 16, 193bitr4rd 277 . . 3  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  On )  ->  ( A  e.  ( R1 `  B )  <->  ~P A  e.  ( R1 `  suc  B ) ) )
2120ex 423 . 2  |-  ( A  e.  U. ( R1
" On )  -> 
( B  e.  On  ->  ( A  e.  ( R1 `  B )  <->  ~P A  e.  ( R1 `  suc  B ) ) ) )
22 r1elwf 7484 . . . 4  |-  ( A  e.  ( R1 `  B )  ->  A  e.  U. ( R1 " On ) )
23 r1elwf 7484 . . . . . 6  |-  ( ~P A  e.  ( R1
`  suc  B )  ->  ~P A  e.  U. ( R1 " On ) )
24 r1elssi 7493 . . . . . 6  |-  ( ~P A  e.  U. ( R1 " On )  ->  ~P A  C_  U. ( R1 " On ) )
2523, 24syl 15 . . . . 5  |-  ( ~P A  e.  ( R1
`  suc  B )  ->  ~P A  C_  U. ( R1 " On ) )
26 ssid 3210 . . . . . 6  |-  A  C_  A
27 elex 2809 . . . . . . . 8  |-  ( ~P A  e.  ( R1
`  suc  B )  ->  ~P A  e.  _V )
28 pwexb 4580 . . . . . . . 8  |-  ( A  e.  _V  <->  ~P A  e.  _V )
2927, 28sylibr 203 . . . . . . 7  |-  ( ~P A  e.  ( R1
`  suc  B )  ->  A  e.  _V )
30 elpwg 3645 . . . . . . 7  |-  ( A  e.  _V  ->  ( A  e.  ~P A  <->  A 
C_  A ) )
3129, 30syl 15 . . . . . 6  |-  ( ~P A  e.  ( R1
`  suc  B )  ->  ( A  e.  ~P A 
<->  A  C_  A )
)
3226, 31mpbiri 224 . . . . 5  |-  ( ~P A  e.  ( R1
`  suc  B )  ->  A  e.  ~P A
)
3325, 32sseldd 3194 . . . 4  |-  ( ~P A  e.  ( R1
`  suc  B )  ->  A  e.  U. ( R1 " On ) )
3422, 33pm5.21ni 341 . . 3  |-  ( -.  A  e.  U. ( R1 " On )  -> 
( A  e.  ( R1 `  B )  <->  ~P A  e.  ( R1 `  suc  B ) ) )
3534a1d 22 . 2  |-  ( -.  A  e.  U. ( R1 " On )  -> 
( B  e.  On  ->  ( A  e.  ( R1 `  B )  <->  ~P A  e.  ( R1 `  suc  B ) ) ) )
3621, 35pm2.61i 156 1  |-  ( B  e.  On  ->  ( A  e.  ( R1 `  B )  <->  ~P A  e.  ( R1 `  suc  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   _Vcvv 2801    C_ wss 3165   ~Pcpw 3638   U.cuni 3843   Ord word 4407   Oncon0 4408   suc csuc 4410   dom cdm 4705   "cima 4708    Fn wfn 5266   ` cfv 5271   R1cr1 7450   rankcrnk 7451
This theorem is referenced by:  inatsk  8416
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-recs 6404  df-rdg 6439  df-r1 7452  df-rank 7453
  Copyright terms: Public domain W3C validator