MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1pwOLD Structured version   Unicode version

Theorem r1pwOLD 7775
Description: A stronger property of  R1 than rankpw 7772. The latter merely proves that  R1 of the successor is a power set, but here we prove that if  A is in the cumulative hierarchy, then  ~P A is in the cumulative hierarchy of the successor. (Contributed by Raph Levien, 29-May-2004.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
r1pwOLD  |-  ( B  e.  On  ->  ( A  e.  ( R1 `  B )  <->  ~P A  e.  ( R1 `  suc  B ) ) )

Proof of Theorem r1pwOLD
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eleq1 2498 . . . . 5  |-  ( x  =  A  ->  (
x  e.  ( R1
`  B )  <->  A  e.  ( R1 `  B ) ) )
2 pweq 3804 . . . . . 6  |-  ( x  =  A  ->  ~P x  =  ~P A
)
32eleq1d 2504 . . . . 5  |-  ( x  =  A  ->  ( ~P x  e.  ( R1 `  suc  B )  <->  ~P A  e.  ( R1 `  suc  B ) ) )
41, 3bibi12d 314 . . . 4  |-  ( x  =  A  ->  (
( x  e.  ( R1 `  B )  <->  ~P x  e.  ( R1 `  suc  B ) )  <->  ( A  e.  ( R1 `  B
)  <->  ~P A  e.  ( R1 `  suc  B
) ) ) )
54imbi2d 309 . . 3  |-  ( x  =  A  ->  (
( B  e.  On  ->  ( x  e.  ( R1 `  B )  <->  ~P x  e.  ( R1 `  suc  B ) ) )  <->  ( B  e.  On  ->  ( A  e.  ( R1 `  B
)  <->  ~P A  e.  ( R1 `  suc  B
) ) ) ) )
6 vex 2961 . . . . . . 7  |-  x  e. 
_V
76rankr1a 7765 . . . . . 6  |-  ( B  e.  On  ->  (
x  e.  ( R1
`  B )  <->  ( rank `  x )  e.  B
) )
8 eloni 4594 . . . . . . 7  |-  ( B  e.  On  ->  Ord  B )
9 ordsucelsuc 4805 . . . . . . 7  |-  ( Ord 
B  ->  ( ( rank `  x )  e.  B  <->  suc  ( rank `  x
)  e.  suc  B
) )
108, 9syl 16 . . . . . 6  |-  ( B  e.  On  ->  (
( rank `  x )  e.  B  <->  suc  ( rank `  x
)  e.  suc  B
) )
117, 10bitrd 246 . . . . 5  |-  ( B  e.  On  ->  (
x  e.  ( R1
`  B )  <->  suc  ( rank `  x )  e.  suc  B ) )
126rankpw 7772 . . . . . 6  |-  ( rank `  ~P x )  =  suc  ( rank `  x
)
1312eleq1i 2501 . . . . 5  |-  ( (
rank `  ~P x
)  e.  suc  B  <->  suc  ( rank `  x
)  e.  suc  B
)
1411, 13syl6bbr 256 . . . 4  |-  ( B  e.  On  ->  (
x  e.  ( R1
`  B )  <->  ( rank `  ~P x )  e. 
suc  B ) )
15 suceloni 4796 . . . . 5  |-  ( B  e.  On  ->  suc  B  e.  On )
166pwex 4385 . . . . . 6  |-  ~P x  e.  _V
1716rankr1a 7765 . . . . 5  |-  ( suc 
B  e.  On  ->  ( ~P x  e.  ( R1 `  suc  B
)  <->  ( rank `  ~P x )  e.  suc  B ) )
1815, 17syl 16 . . . 4  |-  ( B  e.  On  ->  ( ~P x  e.  ( R1 `  suc  B )  <-> 
( rank `  ~P x
)  e.  suc  B
) )
1914, 18bitr4d 249 . . 3  |-  ( B  e.  On  ->  (
x  e.  ( R1
`  B )  <->  ~P x  e.  ( R1 `  suc  B ) ) )
205, 19vtoclg 3013 . 2  |-  ( A  e.  _V  ->  ( B  e.  On  ->  ( A  e.  ( R1
`  B )  <->  ~P A  e.  ( R1 `  suc  B ) ) ) )
21 elex 2966 . . . 4  |-  ( A  e.  ( R1 `  B )  ->  A  e.  _V )
22 elex 2966 . . . . 5  |-  ( ~P A  e.  ( R1
`  suc  B )  ->  ~P A  e.  _V )
23 pwexb 4756 . . . . 5  |-  ( A  e.  _V  <->  ~P A  e.  _V )
2422, 23sylibr 205 . . . 4  |-  ( ~P A  e.  ( R1
`  suc  B )  ->  A  e.  _V )
2521, 24pm5.21ni 343 . . 3  |-  ( -.  A  e.  _V  ->  ( A  e.  ( R1
`  B )  <->  ~P A  e.  ( R1 `  suc  B ) ) )
2625a1d 24 . 2  |-  ( -.  A  e.  _V  ->  ( B  e.  On  ->  ( A  e.  ( R1
`  B )  <->  ~P A  e.  ( R1 `  suc  B ) ) ) )
2720, 26pm2.61i 159 1  |-  ( B  e.  On  ->  ( A  e.  ( R1 `  B )  <->  ~P A  e.  ( R1 `  suc  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    = wceq 1653    e. wcel 1726   _Vcvv 2958   ~Pcpw 3801   Ord word 4583   Oncon0 4584   suc csuc 4586   ` cfv 5457   R1cr1 7691   rankcrnk 7692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-reg 7563  ax-inf2 7599
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-recs 6636  df-rdg 6671  df-r1 7693  df-rank 7694
  Copyright terms: Public domain W3C validator