MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1pwss Unicode version

Theorem r1pwss 7674
Description: Each set of the cumulative hierarchy is closed under subsets. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
r1pwss  |-  ( A  e.  ( R1 `  B )  ->  ~P A  C_  ( R1 `  B ) )

Proof of Theorem r1pwss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1funlim 7656 . . . . . . 7  |-  ( Fun 
R1  /\  Lim  dom  R1 )
21simpri 449 . . . . . 6  |-  Lim  dom  R1
3 limord 4608 . . . . . 6  |-  ( Lim 
dom  R1  ->  Ord  dom  R1 )
42, 3ax-mp 8 . . . . 5  |-  Ord  dom  R1
5 ordsson 4737 . . . . 5  |-  ( Ord 
dom  R1  ->  dom  R1  C_  On )
64, 5ax-mp 8 . . . 4  |-  dom  R1  C_  On
7 elfvdm 5724 . . . 4  |-  ( A  e.  ( R1 `  B )  ->  B  e.  dom  R1 )
86, 7sseldi 3314 . . 3  |-  ( A  e.  ( R1 `  B )  ->  B  e.  On )
9 onzsl 4793 . . 3  |-  ( B  e.  On  <->  ( B  =  (/)  \/  E. x  e.  On  B  =  suc  x  \/  ( B  e.  _V  /\  Lim  B
) ) )
108, 9sylib 189 . 2  |-  ( A  e.  ( R1 `  B )  ->  ( B  =  (/)  \/  E. x  e.  On  B  =  suc  x  \/  ( B  e.  _V  /\  Lim  B ) ) )
11 noel 3600 . . . . 5  |-  -.  A  e.  (/)
12 fveq2 5695 . . . . . . . 8  |-  ( B  =  (/)  ->  ( R1
`  B )  =  ( R1 `  (/) ) )
13 r10 7658 . . . . . . . 8  |-  ( R1
`  (/) )  =  (/)
1412, 13syl6eq 2460 . . . . . . 7  |-  ( B  =  (/)  ->  ( R1
`  B )  =  (/) )
1514eleq2d 2479 . . . . . 6  |-  ( B  =  (/)  ->  ( A  e.  ( R1 `  B )  <->  A  e.  (/) ) )
1615biimpcd 216 . . . . 5  |-  ( A  e.  ( R1 `  B )  ->  ( B  =  (/)  ->  A  e.  (/) ) )
1711, 16mtoi 171 . . . 4  |-  ( A  e.  ( R1 `  B )  ->  -.  B  =  (/) )
1817pm2.21d 100 . . 3  |-  ( A  e.  ( R1 `  B )  ->  ( B  =  (/)  ->  ~P A  C_  ( R1 `  B ) ) )
19 simpl 444 . . . . . . . 8  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  A  e.  ( R1 `  B ) )
20 simpr 448 . . . . . . . . . 10  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  B  =  suc  x )
2120fveq2d 5699 . . . . . . . . 9  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  ( R1 `  B )  =  ( R1 `  suc  x
) )
227adantr 452 . . . . . . . . . . . 12  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  B  e.  dom  R1 )
2320, 22eqeltrrd 2487 . . . . . . . . . . 11  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  suc  x  e.  dom  R1 )
24 limsuc 4796 . . . . . . . . . . . 12  |-  ( Lim 
dom  R1  ->  ( x  e.  dom  R1  <->  suc  x  e. 
dom  R1 ) )
252, 24ax-mp 8 . . . . . . . . . . 11  |-  ( x  e.  dom  R1  <->  suc  x  e. 
dom  R1 )
2623, 25sylibr 204 . . . . . . . . . 10  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  x  e.  dom  R1 )
27 r1sucg 7659 . . . . . . . . . 10  |-  ( x  e.  dom  R1  ->  ( R1 `  suc  x
)  =  ~P ( R1 `  x ) )
2826, 27syl 16 . . . . . . . . 9  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  ( R1 `  suc  x )  =  ~P ( R1 `  x ) )
2921, 28eqtrd 2444 . . . . . . . 8  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  ( R1 `  B )  =  ~P ( R1 `  x ) )
3019, 29eleqtrd 2488 . . . . . . 7  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  A  e.  ~P ( R1 `  x ) )
31 elpwi 3775 . . . . . . . 8  |-  ( A  e.  ~P ( R1
`  x )  ->  A  C_  ( R1 `  x ) )
32 sspwb 4381 . . . . . . . 8  |-  ( A 
C_  ( R1 `  x )  <->  ~P A  C_ 
~P ( R1 `  x ) )
3331, 32sylib 189 . . . . . . 7  |-  ( A  e.  ~P ( R1
`  x )  ->  ~P A  C_  ~P ( R1 `  x ) )
3430, 33syl 16 . . . . . 6  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  ~P A  C_  ~P ( R1 `  x
) )
3534, 29sseqtr4d 3353 . . . . 5  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  ~P A  C_  ( R1 `  B ) )
3635ex 424 . . . 4  |-  ( A  e.  ( R1 `  B )  ->  ( B  =  suc  x  ->  ~P A  C_  ( R1
`  B ) ) )
3736rexlimdvw 2801 . . 3  |-  ( A  e.  ( R1 `  B )  ->  ( E. x  e.  On  B  =  suc  x  ->  ~P A  C_  ( R1
`  B ) ) )
38 r1tr 7666 . . . . . 6  |-  Tr  ( R1 `  B )
39 simpl 444 . . . . . . . . . . 11  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  A  e.  ( R1 `  B
) )
40 r1limg 7661 . . . . . . . . . . . 12  |-  ( ( B  e.  dom  R1  /\ 
Lim  B )  -> 
( R1 `  B
)  =  U_ x  e.  B  ( R1 `  x ) )
417, 40sylan 458 . . . . . . . . . . 11  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  ( R1 `  B )  = 
U_ x  e.  B  ( R1 `  x ) )
4239, 41eleqtrd 2488 . . . . . . . . . 10  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  A  e.  U_ x  e.  B  ( R1 `  x ) )
43 eliun 4065 . . . . . . . . . 10  |-  ( A  e.  U_ x  e.  B  ( R1 `  x )  <->  E. x  e.  B  A  e.  ( R1 `  x ) )
4442, 43sylib 189 . . . . . . . . 9  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  E. x  e.  B  A  e.  ( R1 `  x ) )
45 simprl 733 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  x  e.  B )
46 limsuc 4796 . . . . . . . . . . . . 13  |-  ( Lim 
B  ->  ( x  e.  B  <->  suc  x  e.  B
) )
4746ad2antlr 708 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  -> 
( x  e.  B  <->  suc  x  e.  B ) )
4845, 47mpbid 202 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  suc  x  e.  B )
49 limsuc 4796 . . . . . . . . . . . 12  |-  ( Lim 
B  ->  ( suc  x  e.  B  <->  suc  suc  x  e.  B ) )
5049ad2antlr 708 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  -> 
( suc  x  e.  B 
<->  suc  suc  x  e.  B ) )
5148, 50mpbid 202 . . . . . . . . . 10  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  suc  suc  x  e.  B
)
52 r1tr 7666 . . . . . . . . . . . . . . 15  |-  Tr  ( R1 `  x )
53 simprr 734 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  A  e.  ( R1 `  x ) )
54 trss 4279 . . . . . . . . . . . . . . 15  |-  ( Tr  ( R1 `  x
)  ->  ( A  e.  ( R1 `  x
)  ->  A  C_  ( R1 `  x ) ) )
5552, 53, 54mpsyl 61 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  A  C_  ( R1 `  x ) )
5655, 32sylib 189 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  ~P A  C_  ~P ( R1 `  x ) )
577ad2antrr 707 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  B  e.  dom  R1 )
58 ordtr1 4592 . . . . . . . . . . . . . . . 16  |-  ( Ord 
dom  R1  ->  ( ( x  e.  B  /\  B  e.  dom  R1 )  ->  x  e.  dom  R1 ) )
594, 58ax-mp 8 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  B  /\  B  e.  dom  R1 )  ->  x  e.  dom  R1 )
6045, 57, 59syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  x  e.  dom  R1 )
6160, 27syl 16 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  -> 
( R1 `  suc  x )  =  ~P ( R1 `  x ) )
6256, 61sseqtr4d 3353 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  ~P A  C_  ( R1
`  suc  x )
)
63 fvex 5709 . . . . . . . . . . . . 13  |-  ( R1
`  suc  x )  e.  _V
6463elpw2 4332 . . . . . . . . . . . 12  |-  ( ~P A  e.  ~P ( R1 `  suc  x )  <->  ~P A  C_  ( R1
`  suc  x )
)
6562, 64sylibr 204 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  ~P A  e.  ~P ( R1 `  suc  x
) )
6660, 25sylib 189 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  suc  x  e.  dom  R1 )
67 r1sucg 7659 . . . . . . . . . . . 12  |-  ( suc  x  e.  dom  R1  ->  ( R1 `  suc  suc  x )  =  ~P ( R1 `  suc  x
) )
6866, 67syl 16 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  -> 
( R1 `  suc  suc  x )  =  ~P ( R1 `  suc  x
) )
6965, 68eleqtrrd 2489 . . . . . . . . . 10  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  ~P A  e.  ( R1 `  suc  suc  x
) )
70 fveq2 5695 . . . . . . . . . . . 12  |-  ( y  =  suc  suc  x  ->  ( R1 `  y
)  =  ( R1
`  suc  suc  x ) )
7170eleq2d 2479 . . . . . . . . . . 11  |-  ( y  =  suc  suc  x  ->  ( ~P A  e.  ( R1 `  y
)  <->  ~P A  e.  ( R1 `  suc  suc  x ) ) )
7271rspcev 3020 . . . . . . . . . 10  |-  ( ( suc  suc  x  e.  B  /\  ~P A  e.  ( R1 `  suc  suc  x ) )  ->  E. y  e.  B  ~P A  e.  ( R1 `  y ) )
7351, 69, 72syl2anc 643 . . . . . . . . 9  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  E. y  e.  B  ~P A  e.  ( R1 `  y ) )
7444, 73rexlimddv 2802 . . . . . . . 8  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  E. y  e.  B  ~P A  e.  ( R1 `  y
) )
75 eliun 4065 . . . . . . . 8  |-  ( ~P A  e.  U_ y  e.  B  ( R1 `  y )  <->  E. y  e.  B  ~P A  e.  ( R1 `  y
) )
7674, 75sylibr 204 . . . . . . 7  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  ~P A  e.  U_ y  e.  B  ( R1 `  y ) )
77 r1limg 7661 . . . . . . . 8  |-  ( ( B  e.  dom  R1  /\ 
Lim  B )  -> 
( R1 `  B
)  =  U_ y  e.  B  ( R1 `  y ) )
787, 77sylan 458 . . . . . . 7  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  ( R1 `  B )  = 
U_ y  e.  B  ( R1 `  y ) )
7976, 78eleqtrrd 2489 . . . . . 6  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  ~P A  e.  ( R1 `  B ) )
80 trss 4279 . . . . . 6  |-  ( Tr  ( R1 `  B
)  ->  ( ~P A  e.  ( R1 `  B )  ->  ~P A  C_  ( R1 `  B ) ) )
8138, 79, 80mpsyl 61 . . . . 5  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  ~P A  C_  ( R1 `  B ) )
8281ex 424 . . . 4  |-  ( A  e.  ( R1 `  B )  ->  ( Lim  B  ->  ~P A  C_  ( R1 `  B
) ) )
8382adantld 454 . . 3  |-  ( A  e.  ( R1 `  B )  ->  (
( B  e.  _V  /\ 
Lim  B )  ->  ~P A  C_  ( R1
`  B ) ) )
8418, 37, 833jaod 1248 . 2  |-  ( A  e.  ( R1 `  B )  ->  (
( B  =  (/)  \/ 
E. x  e.  On  B  =  suc  x  \/  ( B  e.  _V  /\ 
Lim  B ) )  ->  ~P A  C_  ( R1 `  B ) ) )
8510, 84mpd 15 1  |-  ( A  e.  ( R1 `  B )  ->  ~P A  C_  ( R1 `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    \/ w3o 935    = wceq 1649    e. wcel 1721   E.wrex 2675   _Vcvv 2924    C_ wss 3288   (/)c0 3596   ~Pcpw 3767   U_ciun 4061   Tr wtr 4270   Ord word 4548   Oncon0 4549   Lim wlim 4550   suc csuc 4551   dom cdm 4845   Fun wfun 5415   ` cfv 5421   R1cr1 7652
This theorem is referenced by:  r1sscl  7675
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-reu 2681  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-recs 6600  df-rdg 6635  df-r1 7654
  Copyright terms: Public domain W3C validator