MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1pwss Structured version   Unicode version

Theorem r1pwss 7739
Description: Each set of the cumulative hierarchy is closed under subsets. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
r1pwss  |-  ( A  e.  ( R1 `  B )  ->  ~P A  C_  ( R1 `  B ) )

Proof of Theorem r1pwss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1funlim 7721 . . . . . . 7  |-  ( Fun 
R1  /\  Lim  dom  R1 )
21simpri 450 . . . . . 6  |-  Lim  dom  R1
3 limord 4669 . . . . . 6  |-  ( Lim 
dom  R1  ->  Ord  dom  R1 )
42, 3ax-mp 5 . . . . 5  |-  Ord  dom  R1
5 ordsson 4799 . . . . 5  |-  ( Ord 
dom  R1  ->  dom  R1  C_  On )
64, 5ax-mp 5 . . . 4  |-  dom  R1  C_  On
7 elfvdm 5786 . . . 4  |-  ( A  e.  ( R1 `  B )  ->  B  e.  dom  R1 )
86, 7sseldi 3332 . . 3  |-  ( A  e.  ( R1 `  B )  ->  B  e.  On )
9 onzsl 4855 . . 3  |-  ( B  e.  On  <->  ( B  =  (/)  \/  E. x  e.  On  B  =  suc  x  \/  ( B  e.  _V  /\  Lim  B
) ) )
108, 9sylib 190 . 2  |-  ( A  e.  ( R1 `  B )  ->  ( B  =  (/)  \/  E. x  e.  On  B  =  suc  x  \/  ( B  e.  _V  /\  Lim  B ) ) )
11 noel 3617 . . . . 5  |-  -.  A  e.  (/)
12 fveq2 5757 . . . . . . . 8  |-  ( B  =  (/)  ->  ( R1
`  B )  =  ( R1 `  (/) ) )
13 r10 7723 . . . . . . . 8  |-  ( R1
`  (/) )  =  (/)
1412, 13syl6eq 2490 . . . . . . 7  |-  ( B  =  (/)  ->  ( R1
`  B )  =  (/) )
1514eleq2d 2509 . . . . . 6  |-  ( B  =  (/)  ->  ( A  e.  ( R1 `  B )  <->  A  e.  (/) ) )
1615biimpcd 217 . . . . 5  |-  ( A  e.  ( R1 `  B )  ->  ( B  =  (/)  ->  A  e.  (/) ) )
1711, 16mtoi 172 . . . 4  |-  ( A  e.  ( R1 `  B )  ->  -.  B  =  (/) )
1817pm2.21d 101 . . 3  |-  ( A  e.  ( R1 `  B )  ->  ( B  =  (/)  ->  ~P A  C_  ( R1 `  B ) ) )
19 simpl 445 . . . . . . . 8  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  A  e.  ( R1 `  B ) )
20 simpr 449 . . . . . . . . . 10  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  B  =  suc  x )
2120fveq2d 5761 . . . . . . . . 9  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  ( R1 `  B )  =  ( R1 `  suc  x
) )
227adantr 453 . . . . . . . . . . . 12  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  B  e.  dom  R1 )
2320, 22eqeltrrd 2517 . . . . . . . . . . 11  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  suc  x  e.  dom  R1 )
24 limsuc 4858 . . . . . . . . . . . 12  |-  ( Lim 
dom  R1  ->  ( x  e.  dom  R1  <->  suc  x  e. 
dom  R1 ) )
252, 24ax-mp 5 . . . . . . . . . . 11  |-  ( x  e.  dom  R1  <->  suc  x  e. 
dom  R1 )
2623, 25sylibr 205 . . . . . . . . . 10  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  x  e.  dom  R1 )
27 r1sucg 7724 . . . . . . . . . 10  |-  ( x  e.  dom  R1  ->  ( R1 `  suc  x
)  =  ~P ( R1 `  x ) )
2826, 27syl 16 . . . . . . . . 9  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  ( R1 `  suc  x )  =  ~P ( R1 `  x ) )
2921, 28eqtrd 2474 . . . . . . . 8  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  ( R1 `  B )  =  ~P ( R1 `  x ) )
3019, 29eleqtrd 2518 . . . . . . 7  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  A  e.  ~P ( R1 `  x ) )
31 elpwi 3831 . . . . . . . 8  |-  ( A  e.  ~P ( R1
`  x )  ->  A  C_  ( R1 `  x ) )
32 sspwb 4442 . . . . . . . 8  |-  ( A 
C_  ( R1 `  x )  <->  ~P A  C_ 
~P ( R1 `  x ) )
3331, 32sylib 190 . . . . . . 7  |-  ( A  e.  ~P ( R1
`  x )  ->  ~P A  C_  ~P ( R1 `  x ) )
3430, 33syl 16 . . . . . 6  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  ~P A  C_  ~P ( R1 `  x
) )
3534, 29sseqtr4d 3371 . . . . 5  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  ~P A  C_  ( R1 `  B ) )
3635ex 425 . . . 4  |-  ( A  e.  ( R1 `  B )  ->  ( B  =  suc  x  ->  ~P A  C_  ( R1
`  B ) ) )
3736rexlimdvw 2839 . . 3  |-  ( A  e.  ( R1 `  B )  ->  ( E. x  e.  On  B  =  suc  x  ->  ~P A  C_  ( R1
`  B ) ) )
38 r1tr 7731 . . . . . 6  |-  Tr  ( R1 `  B )
39 simpl 445 . . . . . . . . . . 11  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  A  e.  ( R1 `  B
) )
40 r1limg 7726 . . . . . . . . . . . 12  |-  ( ( B  e.  dom  R1  /\ 
Lim  B )  -> 
( R1 `  B
)  =  U_ x  e.  B  ( R1 `  x ) )
417, 40sylan 459 . . . . . . . . . . 11  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  ( R1 `  B )  = 
U_ x  e.  B  ( R1 `  x ) )
4239, 41eleqtrd 2518 . . . . . . . . . 10  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  A  e.  U_ x  e.  B  ( R1 `  x ) )
43 eliun 4121 . . . . . . . . . 10  |-  ( A  e.  U_ x  e.  B  ( R1 `  x )  <->  E. x  e.  B  A  e.  ( R1 `  x ) )
4442, 43sylib 190 . . . . . . . . 9  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  E. x  e.  B  A  e.  ( R1 `  x ) )
45 simprl 734 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  x  e.  B )
46 limsuc 4858 . . . . . . . . . . . . 13  |-  ( Lim 
B  ->  ( x  e.  B  <->  suc  x  e.  B
) )
4746ad2antlr 709 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  -> 
( x  e.  B  <->  suc  x  e.  B ) )
4845, 47mpbid 203 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  suc  x  e.  B )
49 limsuc 4858 . . . . . . . . . . . 12  |-  ( Lim 
B  ->  ( suc  x  e.  B  <->  suc  suc  x  e.  B ) )
5049ad2antlr 709 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  -> 
( suc  x  e.  B 
<->  suc  suc  x  e.  B ) )
5148, 50mpbid 203 . . . . . . . . . 10  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  suc  suc  x  e.  B
)
52 r1tr 7731 . . . . . . . . . . . . . . 15  |-  Tr  ( R1 `  x )
53 simprr 735 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  A  e.  ( R1 `  x ) )
54 trss 4336 . . . . . . . . . . . . . . 15  |-  ( Tr  ( R1 `  x
)  ->  ( A  e.  ( R1 `  x
)  ->  A  C_  ( R1 `  x ) ) )
5552, 53, 54mpsyl 62 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  A  C_  ( R1 `  x ) )
5655, 32sylib 190 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  ~P A  C_  ~P ( R1 `  x ) )
577ad2antrr 708 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  B  e.  dom  R1 )
58 ordtr1 4653 . . . . . . . . . . . . . . . 16  |-  ( Ord 
dom  R1  ->  ( ( x  e.  B  /\  B  e.  dom  R1 )  ->  x  e.  dom  R1 ) )
594, 58ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  B  /\  B  e.  dom  R1 )  ->  x  e.  dom  R1 )
6045, 57, 59syl2anc 644 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  x  e.  dom  R1 )
6160, 27syl 16 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  -> 
( R1 `  suc  x )  =  ~P ( R1 `  x ) )
6256, 61sseqtr4d 3371 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  ~P A  C_  ( R1
`  suc  x )
)
63 fvex 5771 . . . . . . . . . . . . 13  |-  ( R1
`  suc  x )  e.  _V
6463elpw2 4393 . . . . . . . . . . . 12  |-  ( ~P A  e.  ~P ( R1 `  suc  x )  <->  ~P A  C_  ( R1
`  suc  x )
)
6562, 64sylibr 205 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  ~P A  e.  ~P ( R1 `  suc  x
) )
6660, 25sylib 190 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  suc  x  e.  dom  R1 )
67 r1sucg 7724 . . . . . . . . . . . 12  |-  ( suc  x  e.  dom  R1  ->  ( R1 `  suc  suc  x )  =  ~P ( R1 `  suc  x
) )
6866, 67syl 16 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  -> 
( R1 `  suc  suc  x )  =  ~P ( R1 `  suc  x
) )
6965, 68eleqtrrd 2519 . . . . . . . . . 10  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  ~P A  e.  ( R1 `  suc  suc  x
) )
70 fveq2 5757 . . . . . . . . . . . 12  |-  ( y  =  suc  suc  x  ->  ( R1 `  y
)  =  ( R1
`  suc  suc  x ) )
7170eleq2d 2509 . . . . . . . . . . 11  |-  ( y  =  suc  suc  x  ->  ( ~P A  e.  ( R1 `  y
)  <->  ~P A  e.  ( R1 `  suc  suc  x ) ) )
7271rspcev 3058 . . . . . . . . . 10  |-  ( ( suc  suc  x  e.  B  /\  ~P A  e.  ( R1 `  suc  suc  x ) )  ->  E. y  e.  B  ~P A  e.  ( R1 `  y ) )
7351, 69, 72syl2anc 644 . . . . . . . . 9  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  E. y  e.  B  ~P A  e.  ( R1 `  y ) )
7444, 73rexlimddv 2840 . . . . . . . 8  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  E. y  e.  B  ~P A  e.  ( R1 `  y
) )
75 eliun 4121 . . . . . . . 8  |-  ( ~P A  e.  U_ y  e.  B  ( R1 `  y )  <->  E. y  e.  B  ~P A  e.  ( R1 `  y
) )
7674, 75sylibr 205 . . . . . . 7  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  ~P A  e.  U_ y  e.  B  ( R1 `  y ) )
77 r1limg 7726 . . . . . . . 8  |-  ( ( B  e.  dom  R1  /\ 
Lim  B )  -> 
( R1 `  B
)  =  U_ y  e.  B  ( R1 `  y ) )
787, 77sylan 459 . . . . . . 7  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  ( R1 `  B )  = 
U_ y  e.  B  ( R1 `  y ) )
7976, 78eleqtrrd 2519 . . . . . 6  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  ~P A  e.  ( R1 `  B ) )
80 trss 4336 . . . . . 6  |-  ( Tr  ( R1 `  B
)  ->  ( ~P A  e.  ( R1 `  B )  ->  ~P A  C_  ( R1 `  B ) ) )
8138, 79, 80mpsyl 62 . . . . 5  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  ~P A  C_  ( R1 `  B ) )
8281ex 425 . . . 4  |-  ( A  e.  ( R1 `  B )  ->  ( Lim  B  ->  ~P A  C_  ( R1 `  B
) ) )
8382adantld 455 . . 3  |-  ( A  e.  ( R1 `  B )  ->  (
( B  e.  _V  /\ 
Lim  B )  ->  ~P A  C_  ( R1
`  B ) ) )
8418, 37, 833jaod 1249 . 2  |-  ( A  e.  ( R1 `  B )  ->  (
( B  =  (/)  \/ 
E. x  e.  On  B  =  suc  x  \/  ( B  e.  _V  /\ 
Lim  B ) )  ->  ~P A  C_  ( R1 `  B ) ) )
8510, 84mpd 15 1  |-  ( A  e.  ( R1 `  B )  ->  ~P A  C_  ( R1 `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    \/ w3o 936    = wceq 1653    e. wcel 1727   E.wrex 2712   _Vcvv 2962    C_ wss 3306   (/)c0 3613   ~Pcpw 3823   U_ciun 4117   Tr wtr 4327   Ord word 4609   Oncon0 4610   Lim wlim 4611   suc csuc 4612   dom cdm 4907   Fun wfun 5477   ` cfv 5483   R1cr1 7717
This theorem is referenced by:  r1sscl  7740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rex 2717  df-reu 2718  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-recs 6662  df-rdg 6697  df-r1 7719
  Copyright terms: Public domain W3C validator