MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1rankidb Unicode version

Theorem r1rankidb 7694
Description: Any set is a subset of the hierarchy of its rank. (Contributed by Mario Carneiro, 3-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
r1rankidb  |-  ( A  e.  U. ( R1
" On )  ->  A  C_  ( R1 `  ( rank `  A )
) )

Proof of Theorem r1rankidb
StepHypRef Expression
1 ssid 3335 . 2  |-  ( rank `  A )  C_  ( rank `  A )
2 rankdmr1 7691 . . 3  |-  ( rank `  A )  e.  dom  R1
3 rankr1bg 7693 . . 3  |-  ( ( A  e.  U. ( R1 " On )  /\  ( rank `  A )  e.  dom  R1 )  -> 
( A  C_  ( R1 `  ( rank `  A
) )  <->  ( rank `  A )  C_  ( rank `  A ) ) )
42, 3mpan2 653 . 2  |-  ( A  e.  U. ( R1
" On )  -> 
( A  C_  ( R1 `  ( rank `  A
) )  <->  ( rank `  A )  C_  ( rank `  A ) ) )
51, 4mpbiri 225 1  |-  ( A  e.  U. ( R1
" On )  ->  A  C_  ( R1 `  ( rank `  A )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    e. wcel 1721    C_ wss 3288   U.cuni 3983   Oncon0 4549   dom cdm 4845   "cima 4848   ` cfv 5421   R1cr1 7652   rankcrnk 7653
This theorem is referenced by:  pwwf  7697  unwf  7700  rankpwi  7713  rankelb  7714  rankssb  7738  r1rankid  7749  tcrank  7772
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-reu 2681  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-int 4019  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-recs 6600  df-rdg 6635  df-r1 7654  df-rank 7655
  Copyright terms: Public domain W3C validator