MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1sucg Unicode version

Theorem r1sucg 7457
Description: Value of the cumulative hierarchy of sets function at a successor ordinal. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
r1sucg  |-  ( A  e.  dom  R1  ->  ( R1 `  suc  A
)  =  ~P ( R1 `  A ) )

Proof of Theorem r1sucg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 rdgsucg 6452 . . 3  |-  ( A  e.  dom  rec (
( x  e.  _V  |->  ~P x ) ,  (/) )  ->  ( rec (
( x  e.  _V  |->  ~P x ) ,  (/) ) `  suc  A )  =  ( ( x  e.  _V  |->  ~P x
) `  ( rec ( ( x  e. 
_V  |->  ~P x ) ,  (/) ) `  A ) ) )
2 df-r1 7452 . . . 4  |-  R1  =  rec ( ( x  e. 
_V  |->  ~P x ) ,  (/) )
32dmeqi 4896 . . 3  |-  dom  R1  =  dom  rec ( ( x  e.  _V  |->  ~P x ) ,  (/) )
41, 3eleq2s 2388 . 2  |-  ( A  e.  dom  R1  ->  ( rec ( ( x  e.  _V  |->  ~P x
) ,  (/) ) `  suc  A )  =  ( ( x  e.  _V  |->  ~P x ) `  ( rec ( ( x  e. 
_V  |->  ~P x ) ,  (/) ) `  A ) ) )
52fveq1i 5542 . 2  |-  ( R1
`  suc  A )  =  ( rec (
( x  e.  _V  |->  ~P x ) ,  (/) ) `  suc  A )
6 fvex 5555 . . . 4  |-  ( R1
`  A )  e. 
_V
7 pweq 3641 . . . . 5  |-  ( x  =  ( R1 `  A )  ->  ~P x  =  ~P ( R1 `  A ) )
8 eqid 2296 . . . . 5  |-  ( x  e.  _V  |->  ~P x
)  =  ( x  e.  _V  |->  ~P x
)
96pwex 4209 . . . . 5  |-  ~P ( R1 `  A )  e. 
_V
107, 8, 9fvmpt 5618 . . . 4  |-  ( ( R1 `  A )  e.  _V  ->  (
( x  e.  _V  |->  ~P x ) `  ( R1 `  A ) )  =  ~P ( R1
`  A ) )
116, 10ax-mp 8 . . 3  |-  ( ( x  e.  _V  |->  ~P x ) `  ( R1 `  A ) )  =  ~P ( R1
`  A )
122fveq1i 5542 . . . 4  |-  ( R1
`  A )  =  ( rec ( ( x  e.  _V  |->  ~P x ) ,  (/) ) `  A )
1312fveq2i 5544 . . 3  |-  ( ( x  e.  _V  |->  ~P x ) `  ( R1 `  A ) )  =  ( ( x  e.  _V  |->  ~P x
) `  ( rec ( ( x  e. 
_V  |->  ~P x ) ,  (/) ) `  A ) )
1411, 13eqtr3i 2318 . 2  |-  ~P ( R1 `  A )  =  ( ( x  e. 
_V  |->  ~P x ) `  ( rec ( ( x  e.  _V  |->  ~P x
) ,  (/) ) `  A ) )
154, 5, 143eqtr4g 2353 1  |-  ( A  e.  dom  R1  ->  ( R1 `  suc  A
)  =  ~P ( R1 `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1632    e. wcel 1696   _Vcvv 2801   (/)c0 3468   ~Pcpw 3638    e. cmpt 4093   suc csuc 4410   dom cdm 4705   ` cfv 5271   reccrdg 6438   R1cr1 7450
This theorem is referenced by:  r1suc  7458  r1fin  7461  r1tr  7464  r1ordg  7466  r1pwss  7472  r1val1  7474  rankwflemb  7481  r1elwf  7484  rankr1ai  7486  rankr1bg  7491  pwwf  7495  unwf  7498  uniwf  7507  rankonidlem  7516  rankr1id  7550
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-recs 6404  df-rdg 6439  df-r1 7452
  Copyright terms: Public domain W3C validator