MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1tr Unicode version

Theorem r1tr 7635
Description: The cumulative hierarchy of sets is transitive. Lemma 7T of [Enderton] p. 202. (Contributed by NM, 8-Sep-2003.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
r1tr  |-  Tr  ( R1 `  A )

Proof of Theorem r1tr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1funlim 7625 . . . . . 6  |-  ( Fun 
R1  /\  Lim  dom  R1 )
21simpri 449 . . . . 5  |-  Lim  dom  R1
3 limord 4581 . . . . 5  |-  ( Lim 
dom  R1  ->  Ord  dom  R1 )
4 ordsson 4710 . . . . 5  |-  ( Ord 
dom  R1  ->  dom  R1  C_  On )
52, 3, 4mp2b 10 . . . 4  |-  dom  R1  C_  On
65sseli 3287 . . 3  |-  ( A  e.  dom  R1  ->  A  e.  On )
7 fveq2 5668 . . . . . 6  |-  ( x  =  (/)  ->  ( R1
`  x )  =  ( R1 `  (/) ) )
8 r10 7627 . . . . . 6  |-  ( R1
`  (/) )  =  (/)
97, 8syl6eq 2435 . . . . 5  |-  ( x  =  (/)  ->  ( R1
`  x )  =  (/) )
10 treq 4249 . . . . 5  |-  ( ( R1 `  x )  =  (/)  ->  ( Tr  ( R1 `  x
)  <->  Tr  (/) ) )
119, 10syl 16 . . . 4  |-  ( x  =  (/)  ->  ( Tr  ( R1 `  x
)  <->  Tr  (/) ) )
12 fveq2 5668 . . . . 5  |-  ( x  =  y  ->  ( R1 `  x )  =  ( R1 `  y
) )
13 treq 4249 . . . . 5  |-  ( ( R1 `  x )  =  ( R1 `  y )  ->  ( Tr  ( R1 `  x
)  <->  Tr  ( R1 `  y ) ) )
1412, 13syl 16 . . . 4  |-  ( x  =  y  ->  ( Tr  ( R1 `  x
)  <->  Tr  ( R1 `  y ) ) )
15 fveq2 5668 . . . . 5  |-  ( x  =  suc  y  -> 
( R1 `  x
)  =  ( R1
`  suc  y )
)
16 treq 4249 . . . . 5  |-  ( ( R1 `  x )  =  ( R1 `  suc  y )  ->  ( Tr  ( R1 `  x
)  <->  Tr  ( R1 ` 
suc  y ) ) )
1715, 16syl 16 . . . 4  |-  ( x  =  suc  y  -> 
( Tr  ( R1
`  x )  <->  Tr  ( R1 `  suc  y ) ) )
18 fveq2 5668 . . . . 5  |-  ( x  =  A  ->  ( R1 `  x )  =  ( R1 `  A
) )
19 treq 4249 . . . . 5  |-  ( ( R1 `  x )  =  ( R1 `  A )  ->  ( Tr  ( R1 `  x
)  <->  Tr  ( R1 `  A ) ) )
2018, 19syl 16 . . . 4  |-  ( x  =  A  ->  ( Tr  ( R1 `  x
)  <->  Tr  ( R1 `  A ) ) )
21 tr0 4254 . . . 4  |-  Tr  (/)
22 limsuc 4769 . . . . . . . 8  |-  ( Lim 
dom  R1  ->  ( y  e.  dom  R1  <->  suc  y  e. 
dom  R1 ) )
232, 22ax-mp 8 . . . . . . 7  |-  ( y  e.  dom  R1  <->  suc  y  e. 
dom  R1 )
24 simpr 448 . . . . . . . . 9  |-  ( ( y  e.  On  /\  Tr  ( R1 `  y
) )  ->  Tr  ( R1 `  y ) )
25 pwtr 4357 . . . . . . . . 9  |-  ( Tr  ( R1 `  y
)  <->  Tr  ~P ( R1 `  y ) )
2624, 25sylib 189 . . . . . . . 8  |-  ( ( y  e.  On  /\  Tr  ( R1 `  y
) )  ->  Tr  ~P ( R1 `  y
) )
27 r1sucg 7628 . . . . . . . . 9  |-  ( y  e.  dom  R1  ->  ( R1 `  suc  y
)  =  ~P ( R1 `  y ) )
28 treq 4249 . . . . . . . . 9  |-  ( ( R1 `  suc  y
)  =  ~P ( R1 `  y )  -> 
( Tr  ( R1
`  suc  y )  <->  Tr 
~P ( R1 `  y ) ) )
2927, 28syl 16 . . . . . . . 8  |-  ( y  e.  dom  R1  ->  ( Tr  ( R1 `  suc  y )  <->  Tr  ~P ( R1 `  y ) ) )
3026, 29syl5ibrcom 214 . . . . . . 7  |-  ( ( y  e.  On  /\  Tr  ( R1 `  y
) )  ->  (
y  e.  dom  R1  ->  Tr  ( R1 `  suc  y ) ) )
3123, 30syl5bir 210 . . . . . 6  |-  ( ( y  e.  On  /\  Tr  ( R1 `  y
) )  ->  ( suc  y  e.  dom  R1 
->  Tr  ( R1 `  suc  y ) ) )
32 ndmfv 5695 . . . . . . . 8  |-  ( -. 
suc  y  e.  dom  R1 
->  ( R1 `  suc  y )  =  (/) )
33 treq 4249 . . . . . . . 8  |-  ( ( R1 `  suc  y
)  =  (/)  ->  ( Tr  ( R1 `  suc  y )  <->  Tr  (/) ) )
3432, 33syl 16 . . . . . . 7  |-  ( -. 
suc  y  e.  dom  R1 
->  ( Tr  ( R1
`  suc  y )  <->  Tr  (/) ) )
3521, 34mpbiri 225 . . . . . 6  |-  ( -. 
suc  y  e.  dom  R1 
->  Tr  ( R1 `  suc  y ) )
3631, 35pm2.61d1 153 . . . . 5  |-  ( ( y  e.  On  /\  Tr  ( R1 `  y
) )  ->  Tr  ( R1 `  suc  y
) )
3736ex 424 . . . 4  |-  ( y  e.  On  ->  ( Tr  ( R1 `  y
)  ->  Tr  ( R1 `  suc  y ) ) )
38 triun 4256 . . . . . . . 8  |-  ( A. y  e.  x  Tr  ( R1 `  y )  ->  Tr  U_ y  e.  x  ( R1 `  y ) )
39 r1limg 7630 . . . . . . . . . 10  |-  ( ( x  e.  dom  R1  /\ 
Lim  x )  -> 
( R1 `  x
)  =  U_ y  e.  x  ( R1 `  y ) )
4039ancoms 440 . . . . . . . . 9  |-  ( ( Lim  x  /\  x  e.  dom  R1 )  -> 
( R1 `  x
)  =  U_ y  e.  x  ( R1 `  y ) )
41 treq 4249 . . . . . . . . 9  |-  ( ( R1 `  x )  =  U_ y  e.  x  ( R1 `  y )  ->  ( Tr  ( R1 `  x
)  <->  Tr  U_ y  e.  x  ( R1 `  y ) ) )
4240, 41syl 16 . . . . . . . 8  |-  ( ( Lim  x  /\  x  e.  dom  R1 )  -> 
( Tr  ( R1
`  x )  <->  Tr  U_ y  e.  x  ( R1 `  y ) ) )
4338, 42syl5ibr 213 . . . . . . 7  |-  ( ( Lim  x  /\  x  e.  dom  R1 )  -> 
( A. y  e.  x  Tr  ( R1
`  y )  ->  Tr  ( R1 `  x
) ) )
4443impancom 428 . . . . . 6  |-  ( ( Lim  x  /\  A. y  e.  x  Tr  ( R1 `  y ) )  ->  ( x  e.  dom  R1  ->  Tr  ( R1 `  x ) ) )
45 ndmfv 5695 . . . . . . . 8  |-  ( -.  x  e.  dom  R1  ->  ( R1 `  x
)  =  (/) )
4645, 10syl 16 . . . . . . 7  |-  ( -.  x  e.  dom  R1  ->  ( Tr  ( R1
`  x )  <->  Tr  (/) ) )
4721, 46mpbiri 225 . . . . . 6  |-  ( -.  x  e.  dom  R1  ->  Tr  ( R1 `  x ) )
4844, 47pm2.61d1 153 . . . . 5  |-  ( ( Lim  x  /\  A. y  e.  x  Tr  ( R1 `  y ) )  ->  Tr  ( R1 `  x ) )
4948ex 424 . . . 4  |-  ( Lim  x  ->  ( A. y  e.  x  Tr  ( R1 `  y )  ->  Tr  ( R1 `  x ) ) )
5011, 14, 17, 20, 21, 37, 49tfinds 4779 . . 3  |-  ( A  e.  On  ->  Tr  ( R1 `  A ) )
516, 50syl 16 . 2  |-  ( A  e.  dom  R1  ->  Tr  ( R1 `  A
) )
52 ndmfv 5695 . . . 4  |-  ( -.  A  e.  dom  R1  ->  ( R1 `  A
)  =  (/) )
53 treq 4249 . . . 4  |-  ( ( R1 `  A )  =  (/)  ->  ( Tr  ( R1 `  A
)  <->  Tr  (/) ) )
5452, 53syl 16 . . 3  |-  ( -.  A  e.  dom  R1  ->  ( Tr  ( R1
`  A )  <->  Tr  (/) ) )
5521, 54mpbiri 225 . 2  |-  ( -.  A  e.  dom  R1  ->  Tr  ( R1 `  A ) )
5651, 55pm2.61i 158 1  |-  Tr  ( R1 `  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2649    C_ wss 3263   (/)c0 3571   ~Pcpw 3742   U_ciun 4035   Tr wtr 4243   Ord word 4521   Oncon0 4522   Lim wlim 4523   suc csuc 4524   dom cdm 4818   Fun wfun 5388   ` cfv 5394   R1cr1 7621
This theorem is referenced by:  r1tr2  7636  r1ordg  7637  r1ord3g  7638  r1ord2  7640  r1sssuc  7642  r1pwss  7643  r1val1  7645  rankwflemb  7652  r1elwf  7655  r1elssi  7664  uniwf  7678  tcrank  7741  ackbij2lem3  8054  r1limwun  8544  tskr1om2  8576
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-recs 6569  df-rdg 6604  df-r1 7623
  Copyright terms: Public domain W3C validator