MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1tr Unicode version

Theorem r1tr 7464
Description: The cumulative hierarchy of sets is transitive. Lemma 7T of [Enderton] p. 202. (Contributed by NM, 8-Sep-2003.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
r1tr  |-  Tr  ( R1 `  A )

Proof of Theorem r1tr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1funlim 7454 . . . . . 6  |-  ( Fun 
R1  /\  Lim  dom  R1 )
21simpri 448 . . . . 5  |-  Lim  dom  R1
3 limord 4467 . . . . 5  |-  ( Lim 
dom  R1  ->  Ord  dom  R1 )
4 ordsson 4597 . . . . 5  |-  ( Ord 
dom  R1  ->  dom  R1  C_  On )
52, 3, 4mp2b 9 . . . 4  |-  dom  R1  C_  On
65sseli 3189 . . 3  |-  ( A  e.  dom  R1  ->  A  e.  On )
7 fveq2 5541 . . . . . 6  |-  ( x  =  (/)  ->  ( R1
`  x )  =  ( R1 `  (/) ) )
8 r10 7456 . . . . . 6  |-  ( R1
`  (/) )  =  (/)
97, 8syl6eq 2344 . . . . 5  |-  ( x  =  (/)  ->  ( R1
`  x )  =  (/) )
10 treq 4135 . . . . 5  |-  ( ( R1 `  x )  =  (/)  ->  ( Tr  ( R1 `  x
)  <->  Tr  (/) ) )
119, 10syl 15 . . . 4  |-  ( x  =  (/)  ->  ( Tr  ( R1 `  x
)  <->  Tr  (/) ) )
12 fveq2 5541 . . . . 5  |-  ( x  =  y  ->  ( R1 `  x )  =  ( R1 `  y
) )
13 treq 4135 . . . . 5  |-  ( ( R1 `  x )  =  ( R1 `  y )  ->  ( Tr  ( R1 `  x
)  <->  Tr  ( R1 `  y ) ) )
1412, 13syl 15 . . . 4  |-  ( x  =  y  ->  ( Tr  ( R1 `  x
)  <->  Tr  ( R1 `  y ) ) )
15 fveq2 5541 . . . . 5  |-  ( x  =  suc  y  -> 
( R1 `  x
)  =  ( R1
`  suc  y )
)
16 treq 4135 . . . . 5  |-  ( ( R1 `  x )  =  ( R1 `  suc  y )  ->  ( Tr  ( R1 `  x
)  <->  Tr  ( R1 ` 
suc  y ) ) )
1715, 16syl 15 . . . 4  |-  ( x  =  suc  y  -> 
( Tr  ( R1
`  x )  <->  Tr  ( R1 `  suc  y ) ) )
18 fveq2 5541 . . . . 5  |-  ( x  =  A  ->  ( R1 `  x )  =  ( R1 `  A
) )
19 treq 4135 . . . . 5  |-  ( ( R1 `  x )  =  ( R1 `  A )  ->  ( Tr  ( R1 `  x
)  <->  Tr  ( R1 `  A ) ) )
2018, 19syl 15 . . . 4  |-  ( x  =  A  ->  ( Tr  ( R1 `  x
)  <->  Tr  ( R1 `  A ) ) )
21 tr0 4140 . . . 4  |-  Tr  (/)
22 limsuc 4656 . . . . . . . 8  |-  ( Lim 
dom  R1  ->  ( y  e.  dom  R1  <->  suc  y  e. 
dom  R1 ) )
232, 22ax-mp 8 . . . . . . 7  |-  ( y  e.  dom  R1  <->  suc  y  e. 
dom  R1 )
24 simpr 447 . . . . . . . . 9  |-  ( ( y  e.  On  /\  Tr  ( R1 `  y
) )  ->  Tr  ( R1 `  y ) )
25 pwtr 4242 . . . . . . . . 9  |-  ( Tr  ( R1 `  y
)  <->  Tr  ~P ( R1 `  y ) )
2624, 25sylib 188 . . . . . . . 8  |-  ( ( y  e.  On  /\  Tr  ( R1 `  y
) )  ->  Tr  ~P ( R1 `  y
) )
27 r1sucg 7457 . . . . . . . . 9  |-  ( y  e.  dom  R1  ->  ( R1 `  suc  y
)  =  ~P ( R1 `  y ) )
28 treq 4135 . . . . . . . . 9  |-  ( ( R1 `  suc  y
)  =  ~P ( R1 `  y )  -> 
( Tr  ( R1
`  suc  y )  <->  Tr 
~P ( R1 `  y ) ) )
2927, 28syl 15 . . . . . . . 8  |-  ( y  e.  dom  R1  ->  ( Tr  ( R1 `  suc  y )  <->  Tr  ~P ( R1 `  y ) ) )
3026, 29syl5ibrcom 213 . . . . . . 7  |-  ( ( y  e.  On  /\  Tr  ( R1 `  y
) )  ->  (
y  e.  dom  R1  ->  Tr  ( R1 `  suc  y ) ) )
3123, 30syl5bir 209 . . . . . 6  |-  ( ( y  e.  On  /\  Tr  ( R1 `  y
) )  ->  ( suc  y  e.  dom  R1 
->  Tr  ( R1 `  suc  y ) ) )
32 ndmfv 5568 . . . . . . . 8  |-  ( -. 
suc  y  e.  dom  R1 
->  ( R1 `  suc  y )  =  (/) )
33 treq 4135 . . . . . . . 8  |-  ( ( R1 `  suc  y
)  =  (/)  ->  ( Tr  ( R1 `  suc  y )  <->  Tr  (/) ) )
3432, 33syl 15 . . . . . . 7  |-  ( -. 
suc  y  e.  dom  R1 
->  ( Tr  ( R1
`  suc  y )  <->  Tr  (/) ) )
3521, 34mpbiri 224 . . . . . 6  |-  ( -. 
suc  y  e.  dom  R1 
->  Tr  ( R1 `  suc  y ) )
3631, 35pm2.61d1 151 . . . . 5  |-  ( ( y  e.  On  /\  Tr  ( R1 `  y
) )  ->  Tr  ( R1 `  suc  y
) )
3736ex 423 . . . 4  |-  ( y  e.  On  ->  ( Tr  ( R1 `  y
)  ->  Tr  ( R1 `  suc  y ) ) )
38 triun 4142 . . . . . . . 8  |-  ( A. y  e.  x  Tr  ( R1 `  y )  ->  Tr  U_ y  e.  x  ( R1 `  y ) )
39 r1limg 7459 . . . . . . . . . 10  |-  ( ( x  e.  dom  R1  /\ 
Lim  x )  -> 
( R1 `  x
)  =  U_ y  e.  x  ( R1 `  y ) )
4039ancoms 439 . . . . . . . . 9  |-  ( ( Lim  x  /\  x  e.  dom  R1 )  -> 
( R1 `  x
)  =  U_ y  e.  x  ( R1 `  y ) )
41 treq 4135 . . . . . . . . 9  |-  ( ( R1 `  x )  =  U_ y  e.  x  ( R1 `  y )  ->  ( Tr  ( R1 `  x
)  <->  Tr  U_ y  e.  x  ( R1 `  y ) ) )
4240, 41syl 15 . . . . . . . 8  |-  ( ( Lim  x  /\  x  e.  dom  R1 )  -> 
( Tr  ( R1
`  x )  <->  Tr  U_ y  e.  x  ( R1 `  y ) ) )
4338, 42syl5ibr 212 . . . . . . 7  |-  ( ( Lim  x  /\  x  e.  dom  R1 )  -> 
( A. y  e.  x  Tr  ( R1
`  y )  ->  Tr  ( R1 `  x
) ) )
4443impancom 427 . . . . . 6  |-  ( ( Lim  x  /\  A. y  e.  x  Tr  ( R1 `  y ) )  ->  ( x  e.  dom  R1  ->  Tr  ( R1 `  x ) ) )
45 ndmfv 5568 . . . . . . . 8  |-  ( -.  x  e.  dom  R1  ->  ( R1 `  x
)  =  (/) )
4645, 10syl 15 . . . . . . 7  |-  ( -.  x  e.  dom  R1  ->  ( Tr  ( R1
`  x )  <->  Tr  (/) ) )
4721, 46mpbiri 224 . . . . . 6  |-  ( -.  x  e.  dom  R1  ->  Tr  ( R1 `  x ) )
4844, 47pm2.61d1 151 . . . . 5  |-  ( ( Lim  x  /\  A. y  e.  x  Tr  ( R1 `  y ) )  ->  Tr  ( R1 `  x ) )
4948ex 423 . . . 4  |-  ( Lim  x  ->  ( A. y  e.  x  Tr  ( R1 `  y )  ->  Tr  ( R1 `  x ) ) )
5011, 14, 17, 20, 21, 37, 49tfinds 4666 . . 3  |-  ( A  e.  On  ->  Tr  ( R1 `  A ) )
516, 50syl 15 . 2  |-  ( A  e.  dom  R1  ->  Tr  ( R1 `  A
) )
52 ndmfv 5568 . . . 4  |-  ( -.  A  e.  dom  R1  ->  ( R1 `  A
)  =  (/) )
53 treq 4135 . . . 4  |-  ( ( R1 `  A )  =  (/)  ->  ( Tr  ( R1 `  A
)  <->  Tr  (/) ) )
5452, 53syl 15 . . 3  |-  ( -.  A  e.  dom  R1  ->  ( Tr  ( R1
`  A )  <->  Tr  (/) ) )
5521, 54mpbiri 224 . 2  |-  ( -.  A  e.  dom  R1  ->  Tr  ( R1 `  A ) )
5651, 55pm2.61i 156 1  |-  Tr  ( R1 `  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556    C_ wss 3165   (/)c0 3468   ~Pcpw 3638   U_ciun 3921   Tr wtr 4129   Ord word 4407   Oncon0 4408   Lim wlim 4409   suc csuc 4410   dom cdm 4705   Fun wfun 5265   ` cfv 5271   R1cr1 7450
This theorem is referenced by:  r1tr2  7465  r1ordg  7466  r1ord3g  7467  r1ord2  7469  r1sssuc  7471  r1pwss  7472  r1val1  7474  rankwflemb  7481  r1elwf  7484  r1elssi  7493  uniwf  7507  tcrank  7570  ackbij2lem3  7883  r1limwun  8374  tskr1om2  8406
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-recs 6404  df-rdg 6439  df-r1 7452
  Copyright terms: Public domain W3C validator