MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1tskina Unicode version

Theorem r1tskina 8404
Description: There is a direct relationship between transitive Tarski's classes and inacessible cardinals: the Tarski's classes that occur in the cumulative hierarchy are exactly at the strongly inaccessible cardinals. (Contributed by Mario Carneiro, 8-Jun-2013.)
Assertion
Ref Expression
r1tskina  |-  ( A  e.  On  ->  (
( R1 `  A
)  e.  Tarski  <->  ( A  =  (/)  \/  A  e. 
Inacc ) ) )

Proof of Theorem r1tskina
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-ne 2448 . . . . 5  |-  ( A  =/=  (/)  <->  -.  A  =  (/) )
2 simplr 731 . . . . . . . . . 10  |-  ( ( ( A  e.  On  /\  ( R1 `  A
)  e.  Tarski )  /\  A  =/=  (/) )  ->  ( R1 `  A )  e. 
Tarski )
3 simpll 730 . . . . . . . . . 10  |-  ( ( ( A  e.  On  /\  ( R1 `  A
)  e.  Tarski )  /\  A  =/=  (/) )  ->  A  e.  On )
4 onwf 7502 . . . . . . . . . . . . . . . 16  |-  On  C_  U. ( R1 " On )
54sseli 3176 . . . . . . . . . . . . . . 15  |-  ( A  e.  On  ->  A  e.  U. ( R1 " On ) )
6 eqid 2283 . . . . . . . . . . . . . . . 16  |-  ( rank `  A )  =  (
rank `  A )
7 rankr1c 7493 . . . . . . . . . . . . . . . 16  |-  ( A  e.  U. ( R1
" On )  -> 
( ( rank `  A
)  =  ( rank `  A )  <->  ( -.  A  e.  ( R1 `  ( rank `  A
) )  /\  A  e.  ( R1 `  suc  ( rank `  A )
) ) ) )
86, 7mpbii 202 . . . . . . . . . . . . . . 15  |-  ( A  e.  U. ( R1
" On )  -> 
( -.  A  e.  ( R1 `  ( rank `  A ) )  /\  A  e.  ( R1 `  suc  ( rank `  A ) ) ) )
95, 8syl 15 . . . . . . . . . . . . . 14  |-  ( A  e.  On  ->  ( -.  A  e.  ( R1 `  ( rank `  A
) )  /\  A  e.  ( R1 `  suc  ( rank `  A )
) ) )
109simpld 445 . . . . . . . . . . . . 13  |-  ( A  e.  On  ->  -.  A  e.  ( R1 `  ( rank `  A
) ) )
11 r1fnon 7439 . . . . . . . . . . . . . . . . . 18  |-  R1  Fn  On
12 fndm 5343 . . . . . . . . . . . . . . . . . 18  |-  ( R1  Fn  On  ->  dom  R1  =  On )
1311, 12ax-mp 8 . . . . . . . . . . . . . . . . 17  |-  dom  R1  =  On
1413eleq2i 2347 . . . . . . . . . . . . . . . 16  |-  ( A  e.  dom  R1  <->  A  e.  On )
15 rankonid 7501 . . . . . . . . . . . . . . . 16  |-  ( A  e.  dom  R1  <->  ( rank `  A )  =  A )
1614, 15bitr3i 242 . . . . . . . . . . . . . . 15  |-  ( A  e.  On  <->  ( rank `  A )  =  A )
17 fveq2 5525 . . . . . . . . . . . . . . 15  |-  ( (
rank `  A )  =  A  ->  ( R1
`  ( rank `  A
) )  =  ( R1 `  A ) )
1816, 17sylbi 187 . . . . . . . . . . . . . 14  |-  ( A  e.  On  ->  ( R1 `  ( rank `  A
) )  =  ( R1 `  A ) )
1918eleq2d 2350 . . . . . . . . . . . . 13  |-  ( A  e.  On  ->  ( A  e.  ( R1 `  ( rank `  A
) )  <->  A  e.  ( R1 `  A ) ) )
2010, 19mtbid 291 . . . . . . . . . . . 12  |-  ( A  e.  On  ->  -.  A  e.  ( R1 `  A ) )
2120adantl 452 . . . . . . . . . . 11  |-  ( ( ( R1 `  A
)  e.  Tarski  /\  A  e.  On )  ->  -.  A  e.  ( R1 `  A ) )
22 onssr1 7503 . . . . . . . . . . . . . 14  |-  ( A  e.  dom  R1  ->  A 
C_  ( R1 `  A ) )
2314, 22sylbir 204 . . . . . . . . . . . . 13  |-  ( A  e.  On  ->  A  C_  ( R1 `  A
) )
24 tsken 8376 . . . . . . . . . . . . 13  |-  ( ( ( R1 `  A
)  e.  Tarski  /\  A  C_  ( R1 `  A
) )  ->  ( A  ~~  ( R1 `  A )  \/  A  e.  ( R1 `  A
) ) )
2523, 24sylan2 460 . . . . . . . . . . . 12  |-  ( ( ( R1 `  A
)  e.  Tarski  /\  A  e.  On )  ->  ( A  ~~  ( R1 `  A )  \/  A  e.  ( R1 `  A
) ) )
2625ord 366 . . . . . . . . . . 11  |-  ( ( ( R1 `  A
)  e.  Tarski  /\  A  e.  On )  ->  ( -.  A  ~~  ( R1
`  A )  ->  A  e.  ( R1 `  A ) ) )
2721, 26mt3d 117 . . . . . . . . . 10  |-  ( ( ( R1 `  A
)  e.  Tarski  /\  A  e.  On )  ->  A  ~~  ( R1 `  A
) )
282, 3, 27syl2anc 642 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\  ( R1 `  A
)  e.  Tarski )  /\  A  =/=  (/) )  ->  A  ~~  ( R1 `  A
) )
29 carden2b 7600 . . . . . . . . 9  |-  ( A 
~~  ( R1 `  A )  ->  ( card `  A )  =  ( card `  ( R1 `  A ) ) )
3028, 29syl 15 . . . . . . . 8  |-  ( ( ( A  e.  On  /\  ( R1 `  A
)  e.  Tarski )  /\  A  =/=  (/) )  ->  ( card `  A )  =  ( card `  ( R1 `  A ) ) )
31 simpl 443 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  ( R1 `  A )  e.  Tarski )  ->  A  e.  On )
32 simplr 731 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  On  /\  ( R1 `  A
)  e.  Tarski )  /\  x  e.  A )  ->  ( R1 `  A
)  e.  Tarski )
3323adantr 451 . . . . . . . . . . . . . 14  |-  ( ( A  e.  On  /\  ( R1 `  A )  e.  Tarski )  ->  A  C_  ( R1 `  A
) )
3433sselda 3180 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  On  /\  ( R1 `  A
)  e.  Tarski )  /\  x  e.  A )  ->  x  e.  ( R1
`  A ) )
35 tsksdom 8378 . . . . . . . . . . . . 13  |-  ( ( ( R1 `  A
)  e.  Tarski  /\  x  e.  ( R1 `  A
) )  ->  x  ~<  ( R1 `  A
) )
3632, 34, 35syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\  ( R1 `  A
)  e.  Tarski )  /\  x  e.  A )  ->  x  ~<  ( R1 `  A ) )
37 simpll 730 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  On  /\  ( R1 `  A
)  e.  Tarski )  /\  x  e.  A )  ->  A  e.  On )
38 ensym 6910 . . . . . . . . . . . . . 14  |-  ( A 
~~  ( R1 `  A )  ->  ( R1 `  A )  ~~  A )
3927, 38syl 15 . . . . . . . . . . . . 13  |-  ( ( ( R1 `  A
)  e.  Tarski  /\  A  e.  On )  ->  ( R1 `  A )  ~~  A )
4032, 37, 39syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\  ( R1 `  A
)  e.  Tarski )  /\  x  e.  A )  ->  ( R1 `  A
)  ~~  A )
41 sdomentr 6995 . . . . . . . . . . . 12  |-  ( ( x  ~<  ( R1 `  A )  /\  ( R1 `  A )  ~~  A )  ->  x  ~<  A )
4236, 40, 41syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( A  e.  On  /\  ( R1 `  A
)  e.  Tarski )  /\  x  e.  A )  ->  x  ~<  A )
4342ralrimiva 2626 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  ( R1 `  A )  e.  Tarski )  ->  A. x  e.  A  x  ~<  A )
44 iscard 7608 . . . . . . . . . 10  |-  ( (
card `  A )  =  A  <->  ( A  e.  On  /\  A. x  e.  A  x  ~<  A ) )
4531, 43, 44sylanbrc 645 . . . . . . . . 9  |-  ( ( A  e.  On  /\  ( R1 `  A )  e.  Tarski )  ->  ( card `  A )  =  A )
4645adantr 451 . . . . . . . 8  |-  ( ( ( A  e.  On  /\  ( R1 `  A
)  e.  Tarski )  /\  A  =/=  (/) )  ->  ( card `  A )  =  A )
4730, 46eqtr3d 2317 . . . . . . 7  |-  ( ( ( A  e.  On  /\  ( R1 `  A
)  e.  Tarski )  /\  A  =/=  (/) )  ->  ( card `  ( R1 `  A ) )  =  A )
48 r10 7440 . . . . . . . . . . 11  |-  ( R1
`  (/) )  =  (/)
49 on0eln0 4447 . . . . . . . . . . . . 13  |-  ( A  e.  On  ->  ( (/) 
e.  A  <->  A  =/=  (/) ) )
5049biimpar 471 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  A  =/=  (/) )  ->  (/)  e.  A
)
51 r1sdom 7446 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  (/) 
e.  A )  -> 
( R1 `  (/) )  ~< 
( R1 `  A
) )
5250, 51syldan 456 . . . . . . . . . . 11  |-  ( ( A  e.  On  /\  A  =/=  (/) )  ->  ( R1 `  (/) )  ~<  ( R1 `  A ) )
5348, 52syl5eqbrr 4057 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  A  =/=  (/) )  ->  (/)  ~<  ( R1 `  A ) )
54 fvex 5539 . . . . . . . . . . 11  |-  ( R1
`  A )  e. 
_V
55540sdom 6992 . . . . . . . . . 10  |-  ( (/)  ~< 
( R1 `  A
)  <->  ( R1 `  A )  =/=  (/) )
5653, 55sylib 188 . . . . . . . . 9  |-  ( ( A  e.  On  /\  A  =/=  (/) )  ->  ( R1 `  A )  =/=  (/) )
5756adantlr 695 . . . . . . . 8  |-  ( ( ( A  e.  On  /\  ( R1 `  A
)  e.  Tarski )  /\  A  =/=  (/) )  ->  ( R1 `  A )  =/=  (/) )
58 tskcard 8403 . . . . . . . 8  |-  ( ( ( R1 `  A
)  e.  Tarski  /\  ( R1 `  A )  =/=  (/) )  ->  ( card `  ( R1 `  A
) )  e.  Inacc )
592, 57, 58syl2anc 642 . . . . . . 7  |-  ( ( ( A  e.  On  /\  ( R1 `  A
)  e.  Tarski )  /\  A  =/=  (/) )  ->  ( card `  ( R1 `  A ) )  e. 
Inacc )
6047, 59eqeltrrd 2358 . . . . . 6  |-  ( ( ( A  e.  On  /\  ( R1 `  A
)  e.  Tarski )  /\  A  =/=  (/) )  ->  A  e.  Inacc )
6160ex 423 . . . . 5  |-  ( ( A  e.  On  /\  ( R1 `  A )  e.  Tarski )  ->  ( A  =/=  (/)  ->  A  e.  Inacc
) )
621, 61syl5bir 209 . . . 4  |-  ( ( A  e.  On  /\  ( R1 `  A )  e.  Tarski )  ->  ( -.  A  =  (/)  ->  A  e.  Inacc ) )
6362orrd 367 . . 3  |-  ( ( A  e.  On  /\  ( R1 `  A )  e.  Tarski )  ->  ( A  =  (/)  \/  A  e.  Inacc ) )
6463ex 423 . 2  |-  ( A  e.  On  ->  (
( R1 `  A
)  e.  Tarski  ->  ( A  =  (/)  \/  A  e.  Inacc ) ) )
65 fveq2 5525 . . . . 5  |-  ( A  =  (/)  ->  ( R1
`  A )  =  ( R1 `  (/) ) )
6665, 48syl6eq 2331 . . . 4  |-  ( A  =  (/)  ->  ( R1
`  A )  =  (/) )
67 0tsk 8377 . . . 4  |-  (/)  e.  Tarski
6866, 67syl6eqel 2371 . . 3  |-  ( A  =  (/)  ->  ( R1
`  A )  e. 
Tarski )
69 inatsk 8400 . . 3  |-  ( A  e.  Inacc  ->  ( R1 `  A )  e.  Tarski )
7068, 69jaoi 368 . 2  |-  ( ( A  =  (/)  \/  A  e.  Inacc )  ->  ( R1 `  A )  e. 
Tarski )
7164, 70impbid1 194 1  |-  ( A  e.  On  ->  (
( R1 `  A
)  e.  Tarski  <->  ( A  =  (/)  \/  A  e. 
Inacc ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543    C_ wss 3152   (/)c0 3455   U.cuni 3827   class class class wbr 4023   Oncon0 4392   suc csuc 4394   dom cdm 4689   "cima 4692    Fn wfn 5250   ` cfv 5255    ~~ cen 6860    ~< csdm 6862   R1cr1 7434   rankcrnk 7435   cardccrd 7568   Inacccina 8305   Tarskictsk 8370
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-ac2 8089
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-smo 6363  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-oi 7225  df-har 7272  df-r1 7436  df-rank 7437  df-card 7572  df-aleph 7573  df-cf 7574  df-acn 7575  df-ac 7743  df-wina 8306  df-ina 8307  df-tsk 8371
  Copyright terms: Public domain W3C validator