MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1wunlim Unicode version

Theorem r1wunlim 8359
Description: The weak universes in the cumulative hierarchy are exactly the limit ordinals. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
r1wunlim  |-  ( A  e.  V  ->  (
( R1 `  A
)  e. WUni  <->  Lim  A ) )

Proof of Theorem r1wunlim
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpr 447 . . . . . . 7  |-  ( ( A  e.  V  /\  ( R1 `  A )  e. WUni )  ->  ( R1 `  A )  e. WUni
)
21wun0 8340 . . . . . 6  |-  ( ( A  e.  V  /\  ( R1 `  A )  e. WUni )  ->  (/)  e.  ( R1 `  A ) )
3 elfvdm 5554 . . . . . 6  |-  ( (/)  e.  ( R1 `  A
)  ->  A  e.  dom  R1 )
42, 3syl 15 . . . . 5  |-  ( ( A  e.  V  /\  ( R1 `  A )  e. WUni )  ->  A  e.  dom  R1 )
5 r1fnon 7439 . . . . . 6  |-  R1  Fn  On
6 fndm 5343 . . . . . 6  |-  ( R1  Fn  On  ->  dom  R1  =  On )
75, 6ax-mp 8 . . . . 5  |-  dom  R1  =  On
84, 7syl6eleq 2373 . . . 4  |-  ( ( A  e.  V  /\  ( R1 `  A )  e. WUni )  ->  A  e.  On )
9 eloni 4402 . . . 4  |-  ( A  e.  On  ->  Ord  A )
108, 9syl 15 . . 3  |-  ( ( A  e.  V  /\  ( R1 `  A )  e. WUni )  ->  Ord  A )
11 n0i 3460 . . . . . 6  |-  ( (/)  e.  ( R1 `  A
)  ->  -.  ( R1 `  A )  =  (/) )
122, 11syl 15 . . . . 5  |-  ( ( A  e.  V  /\  ( R1 `  A )  e. WUni )  ->  -.  ( R1 `  A )  =  (/) )
13 fveq2 5525 . . . . . 6  |-  ( A  =  (/)  ->  ( R1
`  A )  =  ( R1 `  (/) ) )
14 r10 7440 . . . . . 6  |-  ( R1
`  (/) )  =  (/)
1513, 14syl6eq 2331 . . . . 5  |-  ( A  =  (/)  ->  ( R1
`  A )  =  (/) )
1612, 15nsyl 113 . . . 4  |-  ( ( A  e.  V  /\  ( R1 `  A )  e. WUni )  ->  -.  A  =  (/) )
17 suceloni 4604 . . . . . . . 8  |-  ( A  e.  On  ->  suc  A  e.  On )
188, 17syl 15 . . . . . . 7  |-  ( ( A  e.  V  /\  ( R1 `  A )  e. WUni )  ->  suc  A  e.  On )
19 sucidg 4470 . . . . . . . 8  |-  ( A  e.  On  ->  A  e.  suc  A )
208, 19syl 15 . . . . . . 7  |-  ( ( A  e.  V  /\  ( R1 `  A )  e. WUni )  ->  A  e.  suc  A )
21 r1ord 7452 . . . . . . 7  |-  ( suc 
A  e.  On  ->  ( A  e.  suc  A  ->  ( R1 `  A
)  e.  ( R1
`  suc  A )
) )
2218, 20, 21sylc 56 . . . . . 6  |-  ( ( A  e.  V  /\  ( R1 `  A )  e. WUni )  ->  ( R1 `  A )  e.  ( R1 `  suc  A ) )
23 r1elwf 7468 . . . . . 6  |-  ( ( R1 `  A )  e.  ( R1 `  suc  A )  ->  ( R1 `  A )  e. 
U. ( R1 " On ) )
24 wfelirr 7497 . . . . . 6  |-  ( ( R1 `  A )  e.  U. ( R1
" On )  ->  -.  ( R1 `  A
)  e.  ( R1
`  A ) )
2522, 23, 243syl 18 . . . . 5  |-  ( ( A  e.  V  /\  ( R1 `  A )  e. WUni )  ->  -.  ( R1 `  A )  e.  ( R1 `  A ) )
26 simprr 733 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  ( R1 `  A
)  e. WUni )  /\  (
x  e.  On  /\  A  =  suc  x ) )  ->  A  =  suc  x )
2726fveq2d 5529 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  ( R1 `  A
)  e. WUni )  /\  (
x  e.  On  /\  A  =  suc  x ) )  ->  ( R1 `  A )  =  ( R1 `  suc  x
) )
28 r1suc 7442 . . . . . . . . . 10  |-  ( x  e.  On  ->  ( R1 `  suc  x )  =  ~P ( R1
`  x ) )
2928ad2antrl 708 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  ( R1 `  A
)  e. WUni )  /\  (
x  e.  On  /\  A  =  suc  x ) )  ->  ( R1 ` 
suc  x )  =  ~P ( R1 `  x ) )
3027, 29eqtrd 2315 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  ( R1 `  A
)  e. WUni )  /\  (
x  e.  On  /\  A  =  suc  x ) )  ->  ( R1 `  A )  =  ~P ( R1 `  x ) )
31 simplr 731 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  ( R1 `  A
)  e. WUni )  /\  (
x  e.  On  /\  A  =  suc  x ) )  ->  ( R1 `  A )  e. WUni )
328adantr 451 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  ( R1 `  A
)  e. WUni )  /\  (
x  e.  On  /\  A  =  suc  x ) )  ->  A  e.  On )
33 sucidg 4470 . . . . . . . . . . . 12  |-  ( x  e.  On  ->  x  e.  suc  x )
3433ad2antrl 708 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  ( R1 `  A
)  e. WUni )  /\  (
x  e.  On  /\  A  =  suc  x ) )  ->  x  e.  suc  x )
3534, 26eleqtrrd 2360 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  ( R1 `  A
)  e. WUni )  /\  (
x  e.  On  /\  A  =  suc  x ) )  ->  x  e.  A )
36 r1ord 7452 . . . . . . . . . 10  |-  ( A  e.  On  ->  (
x  e.  A  -> 
( R1 `  x
)  e.  ( R1
`  A ) ) )
3732, 35, 36sylc 56 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  ( R1 `  A
)  e. WUni )  /\  (
x  e.  On  /\  A  =  suc  x ) )  ->  ( R1 `  x )  e.  ( R1 `  A ) )
3831, 37wunpw 8329 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  ( R1 `  A
)  e. WUni )  /\  (
x  e.  On  /\  A  =  suc  x ) )  ->  ~P ( R1 `  x )  e.  ( R1 `  A
) )
3930, 38eqeltrd 2357 . . . . . . 7  |-  ( ( ( A  e.  V  /\  ( R1 `  A
)  e. WUni )  /\  (
x  e.  On  /\  A  =  suc  x ) )  ->  ( R1 `  A )  e.  ( R1 `  A ) )
4039expr 598 . . . . . 6  |-  ( ( ( A  e.  V  /\  ( R1 `  A
)  e. WUni )  /\  x  e.  On )  ->  ( A  =  suc  x  -> 
( R1 `  A
)  e.  ( R1
`  A ) ) )
4140rexlimdva 2667 . . . . 5  |-  ( ( A  e.  V  /\  ( R1 `  A )  e. WUni )  ->  ( E. x  e.  On  A  =  suc  x  -> 
( R1 `  A
)  e.  ( R1
`  A ) ) )
4225, 41mtod 168 . . . 4  |-  ( ( A  e.  V  /\  ( R1 `  A )  e. WUni )  ->  -.  E. x  e.  On  A  =  suc  x )
43 ioran 476 . . . 4  |-  ( -.  ( A  =  (/)  \/ 
E. x  e.  On  A  =  suc  x )  <-> 
( -.  A  =  (/)  /\  -.  E. x  e.  On  A  =  suc  x ) )
4416, 42, 43sylanbrc 645 . . 3  |-  ( ( A  e.  V  /\  ( R1 `  A )  e. WUni )  ->  -.  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x ) )
45 dflim3 4638 . . 3  |-  ( Lim 
A  <->  ( Ord  A  /\  -.  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x ) ) )
4610, 44, 45sylanbrc 645 . 2  |-  ( ( A  e.  V  /\  ( R1 `  A )  e. WUni )  ->  Lim  A )
47 r1limwun 8358 . 2  |-  ( ( A  e.  V  /\  Lim  A )  ->  ( R1 `  A )  e. WUni
)
4846, 47impbida 805 1  |-  ( A  e.  V  ->  (
( R1 `  A
)  e. WUni  <->  Lim  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1684   E.wrex 2544   (/)c0 3455   ~Pcpw 3625   U.cuni 3827   Ord word 4391   Oncon0 4392   Lim wlim 4393   suc csuc 4394   dom cdm 4689   "cima 4692    Fn wfn 5250   ` cfv 5255   R1cr1 7434  WUnicwun 8322
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-reg 7306  ax-inf2 7342
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-recs 6388  df-rdg 6423  df-r1 7436  df-rank 7437  df-wun 8324
  Copyright terms: Public domain W3C validator