MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r2al Structured version   Unicode version

Theorem r2al 2734
Description: Double restricted universal quantification. (Contributed by NM, 19-Nov-1995.)
Assertion
Ref Expression
r2al  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. x A. y ( ( x  e.  A  /\  y  e.  B )  ->  ph )
)
Distinct variable groups:    x, y    y, A
Allowed substitution hints:    ph( x, y)    A( x)    B( x, y)

Proof of Theorem r2al
StepHypRef Expression
1 nfcv 2571 . 2  |-  F/_ y A
21r2alf 2732 1  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. x A. y ( ( x  e.  A  /\  y  e.  B )  ->  ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1549    e. wcel 1725   A.wral 2697
This theorem is referenced by:  r3al  2755  soss  4513  raliunxp  5006  codir  5246  qfto  5247  fununi  5509  dff13  5996  mpt22eqb  6171  tz7.48lem  6690  qliftfun  6981  zorn2lem4  8371  isirred2  15798  cnmpt12  17691  cnmpt22  17698  dchrelbas3  21014  cvmlift2lem12  24993  dfso2  25369  dfpo2  25370  isdomn3  27491
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702
  Copyright terms: Public domain W3C validator