MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r2alf Unicode version

Theorem r2alf 2578
Description: Double restricted universal quantification. (Contributed by Mario Carneiro, 14-Oct-2016.)
Hypothesis
Ref Expression
r2alf.1  |-  F/_ y A
Assertion
Ref Expression
r2alf  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. x A. y ( ( x  e.  A  /\  y  e.  B )  ->  ph )
)
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    A( x, y)    B( x, y)

Proof of Theorem r2alf
StepHypRef Expression
1 df-ral 2548 . 2  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. x
( x  e.  A  ->  A. y  e.  B  ph ) )
2 r2alf.1 . . . . . 6  |-  F/_ y A
32nfcri 2413 . . . . 5  |-  F/ y  x  e.  A
4319.21 1791 . . . 4  |-  ( A. y ( x  e.  A  ->  ( y  e.  B  ->  ph )
)  <->  ( x  e.  A  ->  A. y
( y  e.  B  ->  ph ) ) )
5 impexp 433 . . . . 5  |-  ( ( ( x  e.  A  /\  y  e.  B
)  ->  ph )  <->  ( x  e.  A  ->  ( y  e.  B  ->  ph )
) )
65albii 1553 . . . 4  |-  ( A. y ( ( x  e.  A  /\  y  e.  B )  ->  ph )  <->  A. y ( x  e.  A  ->  ( y  e.  B  ->  ph )
) )
7 df-ral 2548 . . . . 5  |-  ( A. y  e.  B  ph  <->  A. y
( y  e.  B  ->  ph ) )
87imbi2i 303 . . . 4  |-  ( ( x  e.  A  ->  A. y  e.  B  ph )  <->  ( x  e.  A  ->  A. y
( y  e.  B  ->  ph ) ) )
94, 6, 83bitr4i 268 . . 3  |-  ( A. y ( ( x  e.  A  /\  y  e.  B )  ->  ph )  <->  ( x  e.  A  ->  A. y  e.  B  ph ) )
109albii 1553 . 2  |-  ( A. x A. y ( ( x  e.  A  /\  y  e.  B )  ->  ph )  <->  A. x
( x  e.  A  ->  A. y  e.  B  ph ) )
111, 10bitr4i 243 1  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. x A. y ( ( x  e.  A  /\  y  e.  B )  ->  ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1527    e. wcel 1684   F/_wnfc 2406   A.wral 2543
This theorem is referenced by:  r2al  2580  ralcomf  2698
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548
  Copyright terms: Public domain W3C validator