MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r2ex Unicode version

Theorem r2ex 2581
Description: Double restricted existential quantification. (Contributed by NM, 11-Nov-1995.)
Assertion
Ref Expression
r2ex  |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. x E. y ( ( x  e.  A  /\  y  e.  B )  /\  ph ) )
Distinct variable groups:    x, y    y, A
Allowed substitution hints:    ph( x, y)    A( x)    B( x, y)

Proof of Theorem r2ex
StepHypRef Expression
1 nfcv 2419 . 2  |-  F/_ y A
21r2exf 2579 1  |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. x E. y ( ( x  e.  A  /\  y  e.  B )  /\  ph ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358   E.wex 1528    e. wcel 1684   E.wrex 2544
This theorem is referenced by:  reean  2706  rnoprab2  5931  oeeu  6601  omxpenlem  6963  axcnre  8786  fsumvma  20452  spanuni  22123  5oalem7  22239  3oalem3  22243  ellines  24775  dalem20  29882  diblsmopel  31361
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-cleq 2276  df-clel 2279  df-nfc 2408  df-rex 2549
  Copyright terms: Public domain W3C validator