MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r3al Structured version   Unicode version

Theorem r3al 2765
Description: Triple restricted universal quantification. (Contributed by NM, 19-Nov-1995.)
Assertion
Ref Expression
r3al  |-  ( A. x  e.  A  A. y  e.  B  A. z  e.  C  ph  <->  A. x A. y A. z ( ( x  e.  A  /\  y  e.  B  /\  z  e.  C
)  ->  ph ) )
Distinct variable groups:    x, y,
z    y, A, z    z, B
Allowed substitution hints:    ph( x, y, z)    A( x)    B( x, y)    C( x, y, z)

Proof of Theorem r3al
StepHypRef Expression
1 df-ral 2712 . 2  |-  ( A. x  e.  A  A. y A. z ( ( y  e.  B  /\  z  e.  C )  ->  ph )  <->  A. x
( x  e.  A  ->  A. y A. z
( ( y  e.  B  /\  z  e.  C )  ->  ph )
) )
2 r2al 2744 . . 3  |-  ( A. y  e.  B  A. z  e.  C  ph  <->  A. y A. z ( ( y  e.  B  /\  z  e.  C )  ->  ph )
)
32ralbii 2731 . 2  |-  ( A. x  e.  A  A. y  e.  B  A. z  e.  C  ph  <->  A. x  e.  A  A. y A. z ( ( y  e.  B  /\  z  e.  C )  ->  ph )
)
4 3anass 941 . . . . . . . . 9  |-  ( ( x  e.  A  /\  y  e.  B  /\  z  e.  C )  <->  ( x  e.  A  /\  ( y  e.  B  /\  z  e.  C
) ) )
54imbi1i 317 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  y  e.  B  /\  z  e.  C
)  ->  ph )  <->  ( (
x  e.  A  /\  ( y  e.  B  /\  z  e.  C
) )  ->  ph )
)
6 impexp 435 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  ( y  e.  B  /\  z  e.  C
) )  ->  ph )  <->  ( x  e.  A  -> 
( ( y  e.  B  /\  z  e.  C )  ->  ph )
) )
75, 6bitri 242 . . . . . . 7  |-  ( ( ( x  e.  A  /\  y  e.  B  /\  z  e.  C
)  ->  ph )  <->  ( x  e.  A  ->  ( ( y  e.  B  /\  z  e.  C )  ->  ph ) ) )
87albii 1576 . . . . . 6  |-  ( A. z ( ( x  e.  A  /\  y  e.  B  /\  z  e.  C )  ->  ph )  <->  A. z ( x  e.  A  ->  ( (
y  e.  B  /\  z  e.  C )  ->  ph ) ) )
9 19.21v 1914 . . . . . 6  |-  ( A. z ( x  e.  A  ->  ( (
y  e.  B  /\  z  e.  C )  ->  ph ) )  <->  ( x  e.  A  ->  A. z
( ( y  e.  B  /\  z  e.  C )  ->  ph )
) )
108, 9bitri 242 . . . . 5  |-  ( A. z ( ( x  e.  A  /\  y  e.  B  /\  z  e.  C )  ->  ph )  <->  ( x  e.  A  ->  A. z ( ( y  e.  B  /\  z  e.  C )  ->  ph )
) )
1110albii 1576 . . . 4  |-  ( A. y A. z ( ( x  e.  A  /\  y  e.  B  /\  z  e.  C )  ->  ph )  <->  A. y
( x  e.  A  ->  A. z ( ( y  e.  B  /\  z  e.  C )  ->  ph ) ) )
12 19.21v 1914 . . . 4  |-  ( A. y ( x  e.  A  ->  A. z
( ( y  e.  B  /\  z  e.  C )  ->  ph )
)  <->  ( x  e.  A  ->  A. y A. z ( ( y  e.  B  /\  z  e.  C )  ->  ph )
) )
1311, 12bitri 242 . . 3  |-  ( A. y A. z ( ( x  e.  A  /\  y  e.  B  /\  z  e.  C )  ->  ph )  <->  ( x  e.  A  ->  A. y A. z ( ( y  e.  B  /\  z  e.  C )  ->  ph )
) )
1413albii 1576 . 2  |-  ( A. x A. y A. z
( ( x  e.  A  /\  y  e.  B  /\  z  e.  C )  ->  ph )  <->  A. x ( x  e.  A  ->  A. y A. z ( ( y  e.  B  /\  z  e.  C )  ->  ph )
) )
151, 3, 143bitr4i 270 1  |-  ( A. x  e.  A  A. y  e.  B  A. z  e.  C  ph  <->  A. x A. y A. z ( ( x  e.  A  /\  y  e.  B  /\  z  e.  C
)  ->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937   A.wal 1550    e. wcel 1726   A.wral 2707
This theorem is referenced by:  pocl  4513  dfwe2  4765  isass  21909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ral 2712
  Copyright terms: Public domain W3C validator