Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  raaan2 Unicode version

Theorem raaan2 27953
Description: Rearrange restricted quantifiers with two different restricting classes, analogous to raaan 3561. It is necessary that either both restricting classes are empty or both are not empty. (Contributed by Alexander van der Vekens, 29-Jun-2017.)
Hypotheses
Ref Expression
raaan2.1  |-  F/ y
ph
raaan2.2  |-  F/ x ps
Assertion
Ref Expression
raaan2  |-  ( ( A  =  (/)  <->  B  =  (/) )  ->  ( A. x  e.  A  A. y  e.  B  ( ph  /\  ps )  <->  ( A. x  e.  A  ph  /\  A. y  e.  B  ps ) ) )
Distinct variable groups:    x, y, A    x, B, y
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem raaan2
StepHypRef Expression
1 dfbi3 863 . 2  |-  ( ( A  =  (/)  <->  B  =  (/) )  <->  ( ( A  =  (/)  /\  B  =  (/) )  \/  ( -.  A  =  (/)  /\  -.  B  =  (/) ) ) )
2 rzal 3555 . . . . 5  |-  ( A  =  (/)  ->  A. x  e.  A  A. y  e.  B  ( ph  /\ 
ps ) )
32adantr 451 . . . 4  |-  ( ( A  =  (/)  /\  B  =  (/) )  ->  A. x  e.  A  A. y  e.  B  ( ph  /\ 
ps ) )
4 rzal 3555 . . . . 5  |-  ( A  =  (/)  ->  A. x  e.  A  ph )
54adantr 451 . . . 4  |-  ( ( A  =  (/)  /\  B  =  (/) )  ->  A. x  e.  A  ph )
6 rzal 3555 . . . . 5  |-  ( B  =  (/)  ->  A. y  e.  B  ps )
76adantl 452 . . . 4  |-  ( ( A  =  (/)  /\  B  =  (/) )  ->  A. y  e.  B  ps )
8 pm5.1 830 . . . 4  |-  ( ( A. x  e.  A  A. y  e.  B  ( ph  /\  ps )  /\  ( A. x  e.  A  ph  /\  A. y  e.  B  ps ) )  ->  ( A. x  e.  A  A. y  e.  B  ( ph  /\  ps )  <->  ( A. x  e.  A  ph 
/\  A. y  e.  B  ps ) ) )
93, 5, 7, 8syl12anc 1180 . . 3  |-  ( ( A  =  (/)  /\  B  =  (/) )  ->  ( A. x  e.  A  A. y  e.  B  ( ph  /\  ps )  <->  ( A. x  e.  A  ph 
/\  A. y  e.  B  ps ) ) )
10 df-ne 2448 . . . . 5  |-  ( B  =/=  (/)  <->  -.  B  =  (/) )
11 raaan2.1 . . . . . . 7  |-  F/ y
ph
1211r19.28z 3546 . . . . . 6  |-  ( B  =/=  (/)  ->  ( A. y  e.  B  ( ph  /\  ps )  <->  ( ph  /\ 
A. y  e.  B  ps ) ) )
1312ralbidv 2563 . . . . 5  |-  ( B  =/=  (/)  ->  ( A. x  e.  A  A. y  e.  B  ( ph  /\  ps )  <->  A. x  e.  A  ( ph  /\ 
A. y  e.  B  ps ) ) )
1410, 13sylbir 204 . . . 4  |-  ( -.  B  =  (/)  ->  ( A. x  e.  A  A. y  e.  B  ( ph  /\  ps )  <->  A. x  e.  A  (
ph  /\  A. y  e.  B  ps )
) )
15 df-ne 2448 . . . . 5  |-  ( A  =/=  (/)  <->  -.  A  =  (/) )
16 nfcv 2419 . . . . . . 7  |-  F/_ x B
17 raaan2.2 . . . . . . 7  |-  F/ x ps
1816, 17nfral 2596 . . . . . 6  |-  F/ x A. y  e.  B  ps
1918r19.27z 3552 . . . . 5  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  ( ph  /\  A. y  e.  B  ps )  <->  ( A. x  e.  A  ph  /\  A. y  e.  B  ps ) ) )
2015, 19sylbir 204 . . . 4  |-  ( -.  A  =  (/)  ->  ( A. x  e.  A  ( ph  /\  A. y  e.  B  ps )  <->  ( A. x  e.  A  ph 
/\  A. y  e.  B  ps ) ) )
2114, 20sylan9bbr 681 . . 3  |-  ( ( -.  A  =  (/)  /\ 
-.  B  =  (/) )  ->  ( A. x  e.  A  A. y  e.  B  ( ph  /\ 
ps )  <->  ( A. x  e.  A  ph  /\  A. y  e.  B  ps ) ) )
229, 21jaoi 368 . 2  |-  ( ( ( A  =  (/)  /\  B  =  (/) )  \/  ( -.  A  =  (/)  /\  -.  B  =  (/) ) )  ->  ( A. x  e.  A  A. y  e.  B  ( ph  /\  ps )  <->  ( A. x  e.  A  ph 
/\  A. y  e.  B  ps ) ) )
231, 22sylbi 187 1  |-  ( ( A  =  (/)  <->  B  =  (/) )  ->  ( A. x  e.  A  A. y  e.  B  ( ph  /\  ps )  <->  ( A. x  e.  A  ph  /\  A. y  e.  B  ps ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358   F/wnf 1531    = wceq 1623    =/= wne 2446   A.wral 2543   (/)c0 3455
This theorem is referenced by:  2reu4a  27967
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-v 2790  df-dif 3155  df-nul 3456
  Copyright terms: Public domain W3C validator