Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabbi Structured version   Unicode version

Theorem rabbi 2888
 Description: Equivalent wff's correspond to equal restricted class abstractions. Closed theorem form of rabbidva 2949. (Contributed by NM, 25-Nov-2013.)
Assertion
Ref Expression
rabbi

Proof of Theorem rabbi
StepHypRef Expression
1 abbi 2548 . 2
2 df-ral 2712 . . 3
3 pm5.32 619 . . . 4
43albii 1576 . . 3
52, 4bitri 242 . 2
6 df-rab 2716 . . 3
7 df-rab 2716 . . 3
86, 7eqeq12i 2451 . 2
91, 5, 83bitr4i 270 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178   wa 360  wal 1550   wceq 1653   wcel 1726  cab 2424  wral 2707  crab 2711 This theorem is referenced by:  rabbidva  2949  kqfeq  17758  isr0  17771  eq0rabdioph  26837  eqrabdioph  26838  lerabdioph  26867  eluzrabdioph  26868  ltrabdioph  26870  nerabdioph  26871  dvdsrabdioph  26872 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-ral 2712  df-rab 2716
 Copyright terms: Public domain W3C validator