Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabbi2dva Structured version   Unicode version

Theorem rabbi2dva 3551
 Description: Deduction from a wff to a restricted class abstraction. (Contributed by NM, 14-Jan-2014.)
Hypothesis
Ref Expression
rabbi2dva.1
Assertion
Ref Expression
rabbi2dva
Distinct variable groups:   ,   ,   ,
Allowed substitution hint:   ()

Proof of Theorem rabbi2dva
StepHypRef Expression
1 dfin5 3330 . 2
2 rabbi2dva.1 . . 3
32rabbidva 2949 . 2
41, 3syl5eq 2482 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178   wa 360   wceq 1653   wcel 1726  crab 2711   cin 3321 This theorem is referenced by:  fndmdif  5836  bitsshft  12989  sylow3lem2  15264  leordtvallem1  17276  leordtvallem2  17277  ordtt1  17445  xkoccn  17653  txcnmpt  17658  xkopt  17689  ordthmeolem  17835  divstgphaus  18154  itg2monolem1  19644  lhop1  19900  efopn  20551  dirith  21225  pjvec  23200  pjocvec  23201  neibastop3  26393  diarnN  31989 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-ral 2712  df-rab 2716  df-in 3329
 Copyright terms: Public domain W3C validator