MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabeqbidva Unicode version

Theorem rabeqbidva 2784
Description: Equality of restricted class abstractions. (Contributed by Mario Carneiro, 26-Jan-2017.)
Hypotheses
Ref Expression
rabeqbidva.1  |-  ( ph  ->  A  =  B )
rabeqbidva.2  |-  ( (
ph  /\  x  e.  A )  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
rabeqbidva  |-  ( ph  ->  { x  e.  A  |  ps }  =  {
x  e.  B  |  ch } )
Distinct variable groups:    x, A    x, B    ph, x
Allowed substitution hints:    ps( x)    ch( x)

Proof of Theorem rabeqbidva
StepHypRef Expression
1 rabeqbidva.2 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( ps 
<->  ch ) )
21rabbidva 2779 . 2  |-  ( ph  ->  { x  e.  A  |  ps }  =  {
x  e.  A  |  ch } )
3 rabeqbidva.1 . . 3  |-  ( ph  ->  A  =  B )
4 rabeq 2782 . . 3  |-  ( A  =  B  ->  { x  e.  A  |  ch }  =  { x  e.  B  |  ch } )
53, 4syl 15 . 2  |-  ( ph  ->  { x  e.  A  |  ch }  =  {
x  e.  B  |  ch } )
62, 5eqtrd 2315 1  |-  ( ph  ->  { x  e.  A  |  ps }  =  {
x  e.  B  |  ch } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   {crab 2547
This theorem is referenced by:  natpropd  13850  gsumpropd2lem  23379
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rab 2552
  Copyright terms: Public domain W3C validator