Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabexgf Structured version   Unicode version

Theorem rabexgf 27626
 Description: A version of rabexg 4345 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypothesis
Ref Expression
rabexgf.1
Assertion
Ref Expression
rabexgf

Proof of Theorem rabexgf
StepHypRef Expression
1 df-rab 2706 . . 3
2 simpl 444 . . . . 5
32ss2abi 3407 . . . 4
4 rabexgf.1 . . . . 5
54abid2f 2596 . . . 4
63, 5sseqtri 3372 . . 3
71, 6eqsstri 3370 . 2
8 ssexg 4341 . 2
97, 8mpan 652 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359   wcel 1725  cab 2421  wnfc 2558  crab 2701  cvv 2948   wss 3312 This theorem is referenced by:  stoweidlem27  27707  stoweidlem35  27715 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-rab 2706  df-v 2950  df-in 3319  df-ss 3326
 Copyright terms: Public domain W3C validator