MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabnc Unicode version

Theorem rabnc 3478
Description: Law of noncontradiction, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011.)
Assertion
Ref Expression
rabnc  |-  ( { x  e.  A  |  ph }  i^i  { x  e.  A  |  -.  ph } )  =  (/)
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem rabnc
StepHypRef Expression
1 inrab 3440 . 2  |-  ( { x  e.  A  |  ph }  i^i  { x  e.  A  |  -.  ph } )  =  {
x  e.  A  | 
( ph  /\  -.  ph ) }
2 rabeq0 3476 . . 3  |-  ( { x  e.  A  | 
( ph  /\  -.  ph ) }  =  (/)  <->  A. x  e.  A  -.  ( ph  /\  -.  ph )
)
3 pm3.24 852 . . . 4  |-  -.  ( ph  /\  -.  ph )
43a1i 10 . . 3  |-  ( x  e.  A  ->  -.  ( ph  /\  -.  ph ) )
52, 4mprgbir 2613 . 2  |-  { x  e.  A  |  ( ph  /\  -.  ph ) }  =  (/)
61, 5eqtri 2303 1  |-  ( { x  e.  A  |  ph }  i^i  { x  e.  A  |  -.  ph } )  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 358    = wceq 1623    e. wcel 1684   {crab 2547    i^i cin 3151   (/)c0 3455
This theorem is referenced by:  ballotth  23096  rabncOLD  26353  jm2.22  27088
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-in 3159  df-nul 3456
  Copyright terms: Public domain W3C validator