Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabren3dioph Unicode version

Theorem rabren3dioph 26898
Description: Change variable numbers in a 3-variable Diophantine class abstraction. (Contributed by Stefan O'Rear, 17-Oct-2014.)
Hypotheses
Ref Expression
rabren3dioph.a  |-  ( ( ( a `  1
)  =  ( b `
 X )  /\  ( a `  2
)  =  ( b `
 Y )  /\  ( a `  3
)  =  ( b `
 Z ) )  ->  ( ph  <->  ps )
)
rabren3dioph.b  |-  X  e.  ( 1 ... N
)
rabren3dioph.c  |-  Y  e.  ( 1 ... N
)
rabren3dioph.d  |-  Z  e.  ( 1 ... N
)
Assertion
Ref Expression
rabren3dioph  |-  ( ( N  e.  NN0  /\  { a  e.  ( NN0 
^m  ( 1 ... 3 ) )  | 
ph }  e.  (Dioph `  3 ) )  ->  { b  e.  ( NN0  ^m  (
1 ... N ) )  |  ps }  e.  (Dioph `  N ) )
Distinct variable groups:    ps, a    ph, b    X, a, b    Y, a, b    Z, a, b    N, a, b
Allowed substitution hints:    ph( a)    ps( b)

Proof of Theorem rabren3dioph
StepHypRef Expression
1 vex 2791 . . . . . 6  |-  b  e. 
_V
2 tpex 4519 . . . . . 6  |-  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. }  e.  _V
31, 2coex 5216 . . . . 5  |-  ( b  o.  { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } )  e. 
_V
4 1ne2 9931 . . . . . . . . . . 11  |-  1  =/=  2
5 1re 8837 . . . . . . . . . . . 12  |-  1  e.  RR
6 1lt3 9888 . . . . . . . . . . . 12  |-  1  <  3
75, 6ltneii 8931 . . . . . . . . . . 11  |-  1  =/=  3
8 2re 9815 . . . . . . . . . . . 12  |-  2  e.  RR
9 2lt3 9887 . . . . . . . . . . . 12  |-  2  <  3
108, 9ltneii 8931 . . . . . . . . . . 11  |-  2  =/=  3
11 1ex 8833 . . . . . . . . . . . 12  |-  1  e.  _V
12 2nn 9877 . . . . . . . . . . . . 13  |-  2  e.  NN
1312elexi 2797 . . . . . . . . . . . 12  |-  2  e.  _V
14 3nn 9878 . . . . . . . . . . . . 13  |-  3  e.  NN
1514elexi 2797 . . . . . . . . . . . 12  |-  3  e.  _V
16 rabren3dioph.b . . . . . . . . . . . . 13  |-  X  e.  ( 1 ... N
)
1716elexi 2797 . . . . . . . . . . . 12  |-  X  e. 
_V
18 rabren3dioph.c . . . . . . . . . . . . 13  |-  Y  e.  ( 1 ... N
)
1918elexi 2797 . . . . . . . . . . . 12  |-  Y  e. 
_V
20 rabren3dioph.d . . . . . . . . . . . . 13  |-  Z  e.  ( 1 ... N
)
2120elexi 2797 . . . . . . . . . . . 12  |-  Z  e. 
_V
2211, 13, 15, 17, 19, 21fntp 5306 . . . . . . . . . . 11  |-  ( ( 1  =/=  2  /\  1  =/=  3  /\  2  =/=  3 )  ->  { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. }  Fn  {
1 ,  2 ,  3 } )
234, 7, 10, 22mp3an 1277 . . . . . . . . . 10  |-  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. }  Fn  { 1 ,  2 ,  3 }
2411tpid1 3739 . . . . . . . . . 10  |-  1  e.  { 1 ,  2 ,  3 }
25 fvco2 5594 . . . . . . . . . 10  |-  ( ( { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. }  Fn  { 1 ,  2 ,  3 }  /\  1  e. 
{ 1 ,  2 ,  3 } )  ->  ( ( b  o.  { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } ) ` 
1 )  =  ( b `  ( {
<. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } `  1 ) ) )
2623, 24, 25mp2an 653 . . . . . . . . 9  |-  ( ( b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  1
)  =  ( b `
 ( { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } `  1 ) )
2711, 17fvtp1 5724 . . . . . . . . . . 11  |-  ( ( 1  =/=  2  /\  1  =/=  3 )  ->  ( { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } `  1 )  =  X )
284, 7, 27mp2an 653 . . . . . . . . . 10  |-  ( {
<. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } `  1 )  =  X
2928fveq2i 5528 . . . . . . . . 9  |-  ( b `
 ( { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } `  1 ) )  =  ( b `
 X )
3026, 29eqtri 2303 . . . . . . . 8  |-  ( ( b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  1
)  =  ( b `
 X )
3113tpid2 3740 . . . . . . . . . 10  |-  2  e.  { 1 ,  2 ,  3 }
32 fvco2 5594 . . . . . . . . . 10  |-  ( ( { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. }  Fn  { 1 ,  2 ,  3 }  /\  2  e. 
{ 1 ,  2 ,  3 } )  ->  ( ( b  o.  { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } ) ` 
2 )  =  ( b `  ( {
<. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } `  2 ) ) )
3323, 31, 32mp2an 653 . . . . . . . . 9  |-  ( ( b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  2
)  =  ( b `
 ( { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } `  2 ) )
3413, 19fvtp2 5725 . . . . . . . . . . 11  |-  ( ( 1  =/=  2  /\  2  =/=  3 )  ->  ( { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } `  2 )  =  Y )
354, 10, 34mp2an 653 . . . . . . . . . 10  |-  ( {
<. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } `  2 )  =  Y
3635fveq2i 5528 . . . . . . . . 9  |-  ( b `
 ( { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } `  2 ) )  =  ( b `
 Y )
3733, 36eqtri 2303 . . . . . . . 8  |-  ( ( b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  2
)  =  ( b `
 Y )
3815tpid3 3742 . . . . . . . . . 10  |-  3  e.  { 1 ,  2 ,  3 }
39 fvco2 5594 . . . . . . . . . 10  |-  ( ( { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. }  Fn  { 1 ,  2 ,  3 }  /\  3  e. 
{ 1 ,  2 ,  3 } )  ->  ( ( b  o.  { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } ) ` 
3 )  =  ( b `  ( {
<. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } `  3 ) ) )
4023, 38, 39mp2an 653 . . . . . . . . 9  |-  ( ( b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  3
)  =  ( b `
 ( { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } `  3 ) )
4115, 21fvtp3 5726 . . . . . . . . . . 11  |-  ( ( 1  =/=  3  /\  2  =/=  3 )  ->  ( { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } `  3 )  =  Z )
427, 10, 41mp2an 653 . . . . . . . . . 10  |-  ( {
<. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } `  3 )  =  Z
4342fveq2i 5528 . . . . . . . . 9  |-  ( b `
 ( { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } `  3 ) )  =  ( b `
 Z )
4440, 43eqtri 2303 . . . . . . . 8  |-  ( ( b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  3
)  =  ( b `
 Z )
4530, 37, 443pm3.2i 1130 . . . . . . 7  |-  ( ( ( b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  1
)  =  ( b `
 X )  /\  ( ( b  o. 
{ <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  2
)  =  ( b `
 Y )  /\  ( ( b  o. 
{ <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  3
)  =  ( b `
 Z ) )
46 fveq1 5524 . . . . . . . . 9  |-  ( a  =  ( b  o. 
{ <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } )  ->  (
a `  1 )  =  ( ( b  o.  { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } ) ` 
1 ) )
4746eqeq1d 2291 . . . . . . . 8  |-  ( a  =  ( b  o. 
{ <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } )  ->  (
( a `  1
)  =  ( b `
 X )  <->  ( (
b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  1
)  =  ( b `
 X ) ) )
48 fveq1 5524 . . . . . . . . 9  |-  ( a  =  ( b  o. 
{ <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } )  ->  (
a `  2 )  =  ( ( b  o.  { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } ) ` 
2 ) )
4948eqeq1d 2291 . . . . . . . 8  |-  ( a  =  ( b  o. 
{ <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } )  ->  (
( a `  2
)  =  ( b `
 Y )  <->  ( (
b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  2
)  =  ( b `
 Y ) ) )
50 fveq1 5524 . . . . . . . . 9  |-  ( a  =  ( b  o. 
{ <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } )  ->  (
a `  3 )  =  ( ( b  o.  { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } ) ` 
3 ) )
5150eqeq1d 2291 . . . . . . . 8  |-  ( a  =  ( b  o. 
{ <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } )  ->  (
( a `  3
)  =  ( b `
 Z )  <->  ( (
b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  3
)  =  ( b `
 Z ) ) )
5247, 49, 513anbi123d 1252 . . . . . . 7  |-  ( a  =  ( b  o. 
{ <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } )  ->  (
( ( a ` 
1 )  =  ( b `  X )  /\  ( a ` 
2 )  =  ( b `  Y )  /\  ( a ` 
3 )  =  ( b `  Z ) )  <->  ( ( ( b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  1
)  =  ( b `
 X )  /\  ( ( b  o. 
{ <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  2
)  =  ( b `
 Y )  /\  ( ( b  o. 
{ <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  3
)  =  ( b `
 Z ) ) ) )
5345, 52mpbiri 224 . . . . . 6  |-  ( a  =  ( b  o. 
{ <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } )  ->  (
( a `  1
)  =  ( b `
 X )  /\  ( a `  2
)  =  ( b `
 Y )  /\  ( a `  3
)  =  ( b `
 Z ) ) )
54 rabren3dioph.a . . . . . 6  |-  ( ( ( a `  1
)  =  ( b `
 X )  /\  ( a `  2
)  =  ( b `
 Y )  /\  ( a `  3
)  =  ( b `
 Z ) )  ->  ( ph  <->  ps )
)
5553, 54syl 15 . . . . 5  |-  ( a  =  ( b  o. 
{ <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } )  ->  ( ph 
<->  ps ) )
563, 55sbcie 3025 . . . 4  |-  ( [. ( b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } )  /  a ]. ph  <->  ps )
5756a1i 10 . . 3  |-  ( b  e.  ( NN0  ^m  ( 1 ... N
) )  ->  ( [. ( b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } )  /  a ]. ph  <->  ps ) )
5857rabbiia 2778 . 2  |-  { b  e.  ( NN0  ^m  ( 1 ... N
) )  |  [. ( b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } )  /  a ]. ph }  =  {
b  e.  ( NN0 
^m  ( 1 ... N ) )  |  ps }
5911, 13, 15, 17, 19, 21, 4, 7, 10ftp 26893 . . . . 5  |-  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } : { 1 ,  2 ,  3 } --> { X ,  Y ,  Z }
60 1z 10053 . . . . . . . 8  |-  1  e.  ZZ
61 fztp 10841 . . . . . . . 8  |-  ( 1  e.  ZZ  ->  (
1 ... ( 1  +  2 ) )  =  { 1 ,  ( 1  +  1 ) ,  ( 1  +  2 ) } )
6260, 61ax-mp 8 . . . . . . 7  |-  ( 1 ... ( 1  +  2 ) )  =  { 1 ,  ( 1  +  1 ) ,  ( 1  +  2 ) }
63 ax-1cn 8795 . . . . . . . . . 10  |-  1  e.  CC
64 2cn 9816 . . . . . . . . . 10  |-  2  e.  CC
6563, 64addcomi 9003 . . . . . . . . 9  |-  ( 1  +  2 )  =  ( 2  +  1 )
66 df-3 9805 . . . . . . . . 9  |-  3  =  ( 2  +  1 )
6765, 66eqtr4i 2306 . . . . . . . 8  |-  ( 1  +  2 )  =  3
6867oveq2i 5869 . . . . . . 7  |-  ( 1 ... ( 1  +  2 ) )  =  ( 1 ... 3
)
69 eqidd 2284 . . . . . . . . 9  |-  ( 1  e.  ZZ  ->  1  =  1 )
70 1p1e2 9840 . . . . . . . . . 10  |-  ( 1  +  1 )  =  2
7170a1i 10 . . . . . . . . 9  |-  ( 1  e.  ZZ  ->  (
1  +  1 )  =  2 )
7267a1i 10 . . . . . . . . 9  |-  ( 1  e.  ZZ  ->  (
1  +  2 )  =  3 )
7369, 71, 72tpeq123d 3721 . . . . . . . 8  |-  ( 1  e.  ZZ  ->  { 1 ,  ( 1  +  1 ) ,  ( 1  +  2 ) }  =  { 1 ,  2 ,  3 } )
7460, 73ax-mp 8 . . . . . . 7  |-  { 1 ,  ( 1  +  1 ) ,  ( 1  +  2 ) }  =  { 1 ,  2 ,  3 }
7562, 68, 743eqtr3i 2311 . . . . . 6  |-  ( 1 ... 3 )  =  { 1 ,  2 ,  3 }
7675feq2i 5384 . . . . 5  |-  ( {
<. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } : ( 1 ... 3 ) --> { X ,  Y ,  Z }  <->  { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } : { 1 ,  2 ,  3 } --> { X ,  Y ,  Z }
)
7759, 76mpbir 200 . . . 4  |-  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } : ( 1 ... 3 ) --> { X ,  Y ,  Z }
7816, 18, 203pm3.2i 1130 . . . . 5  |-  ( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N
)  /\  Z  e.  ( 1 ... N
) )
7917, 19, 21tpss 3779 . . . . 5  |-  ( ( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N )  /\  Z  e.  ( 1 ... N ) )  <->  { X ,  Y ,  Z }  C_  ( 1 ... N ) )
8078, 79mpbi 199 . . . 4  |-  { X ,  Y ,  Z }  C_  ( 1 ... N
)
81 fss 5397 . . . 4  |-  ( ( { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } : ( 1 ... 3 ) --> { X ,  Y ,  Z }  /\  { X ,  Y ,  Z }  C_  ( 1 ... N
) )  ->  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } : ( 1 ... 3 ) --> ( 1 ... N ) )
8277, 80, 81mp2an 653 . . 3  |-  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } : ( 1 ... 3 ) --> ( 1 ... N )
83 rabrenfdioph 26897 . . 3  |-  ( ( N  e.  NN0  /\  {
<. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } : ( 1 ... 3 ) --> ( 1 ... N )  /\  { a  e.  ( NN0  ^m  (
1 ... 3 ) )  |  ph }  e.  (Dioph `  3 ) )  ->  { b  e.  ( NN0  ^m  (
1 ... N ) )  |  [. ( b  o.  { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } )  / 
a ]. ph }  e.  (Dioph `  N ) )
8482, 83mp3an2 1265 . 2  |-  ( ( N  e.  NN0  /\  { a  e.  ( NN0 
^m  ( 1 ... 3 ) )  | 
ph }  e.  (Dioph `  3 ) )  ->  { b  e.  ( NN0  ^m  (
1 ... N ) )  |  [. ( b  o.  { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } )  / 
a ]. ph }  e.  (Dioph `  N ) )
8558, 84syl5eqelr 2368 1  |-  ( ( N  e.  NN0  /\  { a  e.  ( NN0 
^m  ( 1 ... 3 ) )  | 
ph }  e.  (Dioph `  3 ) )  ->  { b  e.  ( NN0  ^m  (
1 ... N ) )  |  ps }  e.  (Dioph `  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   {crab 2547   [.wsbc 2991    C_ wss 3152   {ctp 3642   <.cop 3643    o. ccom 4693    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858    ^m cmap 6772   1c1 8738    + caddc 8740   NNcn 9746   2c2 9795   3c3 9796   NN0cn0 9965   ZZcz 10024   ...cfz 10782  Diophcdioph 26834
This theorem is referenced by:  rmxdioph  27109  expdiophlem2  27115
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-hash 11338  df-mzpcl 26801  df-mzp 26802  df-dioph 26835
  Copyright terms: Public domain W3C validator