Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabsn Structured version   Unicode version

Theorem rabsn 3873
 Description: Condition where a restricted class abstraction is a singleton. (Contributed by NM, 28-May-2006.)
Assertion
Ref Expression
rabsn
Distinct variable groups:   ,   ,

Proof of Theorem rabsn
StepHypRef Expression
1 eleq1 2496 . . . . 5
21pm5.32ri 620 . . . 4
32baib 872 . . 3
43abbidv 2550 . 2
5 df-rab 2714 . 2
6 df-sn 3820 . 2
74, 5, 63eqtr4g 2493 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359   wceq 1652   wcel 1725  cab 2422  crab 2709  csn 3814 This theorem is referenced by:  unisn3  4712  sylow3lem6  15266  lineunray  26081  pmapat  30560  dia0  31850 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-rab 2714  df-sn 3820
 Copyright terms: Public domain W3C validator