Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabsneu Structured version   Unicode version

Theorem rabsneu 3879
 Description: Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006.) (Revised by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
rabsneu

Proof of Theorem rabsneu
StepHypRef Expression
1 df-rab 2714 . . . 4
21eqeq1i 2443 . . 3
3 absneu 3878 . . 3
42, 3sylan2b 462 . 2
5 df-reu 2712 . 2
64, 5sylibr 204 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359   wceq 1652   wcel 1725  weu 2281  cab 2422  wreu 2707  crab 2709  csn 3814 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-reu 2712  df-rab 2714  df-v 2958  df-sn 3820
 Copyright terms: Public domain W3C validator