MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabss2 Unicode version

Theorem rabss2 3363
Description: Subclass law for restricted abstraction. (Contributed by NM, 18-Dec-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
rabss2  |-  ( A 
C_  B  ->  { x  e.  A  |  ph }  C_ 
{ x  e.  B  |  ph } )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem rabss2
StepHypRef Expression
1 pm3.45 808 . . . 4  |-  ( ( x  e.  A  ->  x  e.  B )  ->  ( ( x  e.  A  /\  ph )  ->  ( x  e.  B  /\  ph ) ) )
21alimi 1565 . . 3  |-  ( A. x ( x  e.  A  ->  x  e.  B )  ->  A. x
( ( x  e.  A  /\  ph )  ->  ( x  e.  B  /\  ph ) ) )
3 dfss2 3274 . . 3  |-  ( A 
C_  B  <->  A. x
( x  e.  A  ->  x  e.  B ) )
4 ss2ab 3348 . . 3  |-  ( { x  |  ( x  e.  A  /\  ph ) }  C_  { x  |  ( x  e.  B  /\  ph ) } 
<-> 
A. x ( ( x  e.  A  /\  ph )  ->  ( x  e.  B  /\  ph )
) )
52, 3, 43imtr4i 258 . 2  |-  ( A 
C_  B  ->  { x  |  ( x  e.  A  /\  ph ) }  C_  { x  |  ( x  e.  B  /\  ph ) } )
6 df-rab 2652 . 2  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
7 df-rab 2652 . 2  |-  { x  e.  B  |  ph }  =  { x  |  ( x  e.  B  /\  ph ) }
85, 6, 73sstr4g 3326 1  |-  ( A 
C_  B  ->  { x  e.  A  |  ph }  C_ 
{ x  e.  B  |  ph } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   A.wal 1546    e. wcel 1717   {cab 2367   {crab 2647    C_ wss 3257
This theorem is referenced by:  sess2  4486  hashbcss  13293  dprdss  15508  minveclem4  19194  prmdvdsfi  20751  mumul  20825  sqff1o  20826  rpvmasumlem  21042  shatomistici  23706  xpinpreima2  24103  ballotth  24568  rmxyelqirr  26658  idomodle  27175  lssats  29179  lpssat  29180  lssatle  29182  lssat  29183  atlatmstc  29486  dochspss  31545
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2362
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2506  df-rab 2652  df-in 3264  df-ss 3271
  Copyright terms: Public domain W3C validator