MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabun2 Structured version   Unicode version

Theorem rabun2 3622
Description: Abstraction restricted to a union. (Contributed by Stefan O'Rear, 5-Feb-2015.)
Assertion
Ref Expression
rabun2  |-  { x  e.  ( A  u.  B
)  |  ph }  =  ( { x  e.  A  |  ph }  u.  { x  e.  B  |  ph } )

Proof of Theorem rabun2
StepHypRef Expression
1 df-rab 2716 . 2  |-  { x  e.  ( A  u.  B
)  |  ph }  =  { x  |  ( x  e.  ( A  u.  B )  /\  ph ) }
2 df-rab 2716 . . . 4  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
3 df-rab 2716 . . . 4  |-  { x  e.  B  |  ph }  =  { x  |  ( x  e.  B  /\  ph ) }
42, 3uneq12i 3501 . . 3  |-  ( { x  e.  A  |  ph }  u.  { x  e.  B  |  ph }
)  =  ( { x  |  ( x  e.  A  /\  ph ) }  u.  { x  |  ( x  e.  B  /\  ph ) } )
5 elun 3490 . . . . . . 7  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
65anbi1i 678 . . . . . 6  |-  ( ( x  e.  ( A  u.  B )  /\  ph )  <->  ( ( x  e.  A  \/  x  e.  B )  /\  ph ) )
7 andir 840 . . . . . 6  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  ph )  <->  ( (
x  e.  A  /\  ph )  \/  ( x  e.  B  /\  ph ) ) )
86, 7bitri 242 . . . . 5  |-  ( ( x  e.  ( A  u.  B )  /\  ph )  <->  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  ph )
) )
98abbii 2550 . . . 4  |-  { x  |  ( x  e.  ( A  u.  B
)  /\  ph ) }  =  { x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  ph ) ) }
10 unab 3610 . . . 4  |-  ( { x  |  ( x  e.  A  /\  ph ) }  u.  { x  |  ( x  e.  B  /\  ph ) } )  =  {
x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  ph ) ) }
119, 10eqtr4i 2461 . . 3  |-  { x  |  ( x  e.  ( A  u.  B
)  /\  ph ) }  =  ( { x  |  ( x  e.  A  /\  ph ) }  u.  { x  |  ( x  e.  B  /\  ph ) } )
124, 11eqtr4i 2461 . 2  |-  ( { x  e.  A  |  ph }  u.  { x  e.  B  |  ph }
)  =  { x  |  ( x  e.  ( A  u.  B
)  /\  ph ) }
131, 12eqtr4i 2461 1  |-  { x  e.  ( A  u.  B
)  |  ph }  =  ( { x  e.  A  |  ph }  u.  { x  e.  B  |  ph } )
Colors of variables: wff set class
Syntax hints:    \/ wo 359    /\ wa 360    = wceq 1653    e. wcel 1726   {cab 2424   {crab 2711    u. cun 3320
This theorem is referenced by:  fnsuppres  5955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-rab 2716  df-v 2960  df-un 3327
  Copyright terms: Public domain W3C validator