Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabxm Structured version   Unicode version

Theorem rabxm 3652
 Description: Law of excluded middle, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011.)
Assertion
Ref Expression
rabxm
Distinct variable group:   ,
Allowed substitution hint:   ()

Proof of Theorem rabxm
StepHypRef Expression
1 rabid2 2887 . . 3
2 exmidd 407 . . 3
31, 2mprgbir 2778 . 2
4 unrab 3614 . 2
53, 4eqtr4i 2461 1
 Colors of variables: wff set class Syntax hints:   wn 3   wo 359   wceq 1653   wcel 1726  crab 2711   cun 3320 This theorem is referenced by:  usgrafilem1  21427  ballotth  24797  mbfposadd  26256  jm2.22  27068 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ral 2712  df-rab 2716  df-v 2960  df-un 3327
 Copyright terms: Public domain W3C validator