Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabxm Unicode version

Theorem rabxm 3490
 Description: Law of excluded middle, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011.)
Assertion
Ref Expression
rabxm
Distinct variable group:   ,
Allowed substitution hint:   ()

Proof of Theorem rabxm
StepHypRef Expression
1 rabid2 2730 . . 3
2 exmid 404 . . . 4
32a1i 10 . . 3
41, 3mprgbir 2626 . 2
5 unrab 3452 . 2
64, 5eqtr4i 2319 1
 Colors of variables: wff set class Syntax hints:   wn 3   wo 357   wceq 1632   wcel 1696  crab 2560   cun 3163 This theorem is referenced by:  ballotth  23112  itgaddnclem2  25010  rabxmOLD  26455  jm2.22  27191 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-rab 2565  df-v 2803  df-un 3170
 Copyright terms: Public domain W3C validator